The detectors of the laser interferometer gravitational-wave observatory (LIGO) are broadly limited by the quantum noise and rely on the injection of squeezed states of light to achieve their full sensitivity. Squeezing improvement is limited by mode mismatch between the elements of the squeezer and the interferometer. In the current LIGO detectors, there is no way to actively mitigate this mode mismatch.
View Article and Find Full Text PDFSmall, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry-Perot Michelson interferometers).
View Article and Find Full Text PDFWe report the design and testing of a compression-biased thermally-actuated deformable mirror that has a dynamic range larger than the limit imposed by pure-bending stress, negligible higher-order-mode scattering, and a linear defocus response and that is vacuum compatible. The optimum design principles for this class of actuator are described and a mirror with 370 mD dynamic range is demonstrated.
View Article and Find Full Text PDFAdaptive optics are crucial for overcoming the fabrication limits on mirror curvature in high-precision interferometry. We describe a low-cost thermally actuated bimorph mirror with 200 mD linear response, which meets dynamic range and low aberration requirements for the ${\rm{A}} + $A+ upgrade of the Laser Interferometer Gravitational-wave Observatory (LIGO). Its deformation and operation limits were measured and verified against finite element simulation.
View Article and Find Full Text PDFThis is an overview of the adaptive optics used in Advanced LIGO (aLIGO), known as the thermal compensation system (TCS). The TCS was designed to minimize thermally induced spatial distortions in the interferometer optical modes and to provide some correction for static curvature errors in the core optics of aLIGO. The TCS is comprised of ring heater actuators, spatially tunable CO laser projectors, and Hartmann wavefront sensors.
View Article and Find Full Text PDFAdvanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main laser beam that must be minimized by the actuation of "ring heaters," which are additional heater elements that are aimed to reduce the temperature gradients in the mirrors. In this article we derive the first, to the best of our knowledge, analytical model of the temperature field generated by an ideal ring heater.
View Article and Find Full Text PDFParametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress.
View Article and Find Full Text PDFLong-baseline laser interferometers used for gravitational-wave detection have proven to be very complicated to control. In order to have sufficient sensitivity to astrophysical gravitational waves, a set of multiple coupled optical cavities comprising the interferometer must be brought into resonance with the laser field. A set of multi-input, multi-output servos then lock these cavities into place via feedback control.
View Article and Find Full Text PDFWavefront distortion due to absorption in the substrates and coatings of mirrors in advanced gravitational wave interferometers has the potential to compromise the operation and sensitivity of these interferometers [Opt. Lett.29, 2635-2637 (2004)].
View Article and Find Full Text PDFWe describe a Hartmann sensor with a sensitivity of lambda /15,500 at lambda= 820nm. We also demonstrate its application to the measurement of an ultra small change in wavefront and show that the result agrees with that expected to within lambda/3,300.
View Article and Find Full Text PDFA novel differential Hartmann sensor is described. It can be used to determine the characteristics of an optic accurately, precisely, and simply without detailed knowledge of the wavefront used to illuminate the optical system or of the geometry of the measurement system. We demonstrate the application of this sensor to both zonal and modal optical testing of lenses.
View Article and Find Full Text PDF