In the present paper, we introduce a class of robust Z-estimators for moment condition models. These new estimators can be seen as robust alternatives for the minimum empirical divergence estimators. By using the multidimensional Huber function, we first define robust estimators of the element that realizes the supremum in the dual form of the divergence.
View Article and Find Full Text PDFIn this paper, we introduce a new class of robust model selection criteria. These criteria are defined by estimators of the expected overall discrepancy using pseudodistances and the minimum pseudodistance principle. Theoretical properties of these criteria are proved, namely asymptotic unbiasedness, robustness, consistency, as well as the limit laws.
View Article and Find Full Text PDFFor portfolios with a large number of assets, the single index model allows for expressing the large number of covariances between individual asset returns through a significantly smaller number of parameters. This avoids the constraint of having very large samples to estimate the mean and the covariance matrix of the asset returns, which practically would be unrealistic given the dynamic of market conditions. The traditional way to estimate the regression parameters in the single index model is the maximum likelihood method.
View Article and Find Full Text PDFThe presence of outliers in financial asset returns is a frequently occurring phenomenon which may lead to unreliable mean-variance optimized portfolios. This fact is due to the unbounded influence that outliers can have on the mean returns and covariance estimators that are inputs in the optimization procedure. In this paper we present robust estimators of mean and covariance matrix obtained by minimizing an empirical version of a pseudodistance between the assumed model and the true model underlying the data.
View Article and Find Full Text PDF