Publications by authors named "Aida Rodriguez Lopez"

Ribosomes are conserved macromolecular machines that are responsible for protein synthesis in all cells. While our knowledge of ribosome biogenesis and function has increased significantly in recent years, little is known about how ribosomes are degraded under specific cellular conditions. We recently uncovered that ribosomes are efficiently turned over by selective macroautophagy/autophagy during oncogene-induced senescence (OIS).

View Article and Find Full Text PDF

Oncogene-induced senescence (OIS) is a persistent anti-proliferative response that acts as a barrier against malignant transformation. During OIS, cells undergo dynamic remodeling, which involves alterations in protein and organelle homeostasis through autophagy. Here, we show that ribosomes are selectively targeted for degradation by autophagy during OIS.

View Article and Find Full Text PDF

Impairment of translation can lead to collisions of ribosomes, which constitute an activation platform for several ribosomal stress-surveillance pathways. Among these is the ribotoxic stress response (RSR), where ribosomal sensing by the MAP3K ZAKα leads to activation of p38 and JNK kinases. Despite these insights, the physiological ramifications of ribosomal impairment and downstream RSR signaling remain elusive.

View Article and Find Full Text PDF

During autophagy, the coordinated actions of autophagosomes and lysosomes result in the controlled removal of damaged intracellular organelles and superfluous substrates. The evolutionary conservation of this process and its requirement for maintaining cellular homeostasis emphasizes the need to better dissect the pathways governing its molecular regulation. In our previously performed high-content screen, we assessed the effect of 1530 RNA-binding proteins on autophagy.

View Article and Find Full Text PDF

In an attempt to unravel functionality of the non-canonical PRC1.1 Polycomb complex in human leukemogenesis, we show that USP7 and TRIM27 are integral components of PRC1.1.

View Article and Find Full Text PDF

Maintenance of epigenetic modifiers is of utmost importance to preserve the epigenome and consequently appropriate cellular functioning. Here, we analyzed Polycomb group protein (PcG) complex integrity in response to heat shock (HS). Upon HS, various Polycomb Repressive Complex (PRC)1 and PRC2 subunits, including CBX proteins, but also other chromatin regulators, are found to accumulate in the nucleolus.

View Article and Find Full Text PDF

Polycomb proteins are classical regulators of stem cell self-renewal and cell lineage commitment and are frequently deregulated in cancer. Here, we find that the non-canonical PRC1.1 complex, as identified by mass-spectrometry-based proteomics, is critically important for human leukemic stem cells.

View Article and Find Full Text PDF
Article Synopsis
  • Chromatin compaction complicates the detection and repair of DNA damage, especially for lesions that block transcription.
  • The study reveals that two mammalian ISWI ATP-dependent chromatin remodeling complexes, specifically SMARCA5/SNF2H and its partners ACF1 and WSTF, help in resolving transcription stalled by UV-induced DNA damage.
  • SMARCA5's targeting to these damaged sites depends on transcription activity, histone modifications, and its specific domains, utilizing a mechanism that includes scanning and proofreading damaged nucleosomes.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6c8q3lojumov618q3cu1aii5dpn3iphj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once