This work provides a comprehensive characterization of porcine myocardial tissue, combining true biaxial (TBx), simple triaxial shear (STS) and confined compression (CC) tests to analyze its elastic behavior under cyclic loads. We expanded this study to different zones of the ventricular free wall, providing insights into the local behavior along the longitudinal and radial coordinates. The aging impact was also assessed by comparing two age groups (4 and 8 months).
View Article and Find Full Text PDFEngineered heart tissues (EHTs) built from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) showed promising results for cardiac function restoration following myocardial infarction. Nevertheless, human iPSC-CMs have longer action potential and lower cell-to-cell coupling than adult-like CMs. These immature electrophysiological properties favor arrhythmias due to the generation of electrophysiological gradients when hiPSC-CMs are injected in the cardiac tissue.
View Article and Find Full Text PDFCardiotoxicity, characterized by adverse impacts on normal heart function due to drug exposure, is a significant concern due to the potentially serious side effects associated with various pharmaceuticals. It is essential to detect the cardiotoxicity of a drug as early as possible in the testing phase of a medical composite. Therefore, there is a pressing need for more reliable in vitro models that accurately mimic the in vivo conditions of cardiac biopsies.
View Article and Find Full Text PDFAge-related fibrosis in the left ventricle (LV) has been mainly studied in animals by assessing collagen content. Using second-harmonic generation microscopy and image processing, we evaluated amount, aggregation and spatial distribution of LV collagen in young to old pigs, and middle-age and elder living donors. All collagen features increased when comparing adult and old pigs with young ones, but not when comparing adult with old pigs or middle-age with elder individuals.
View Article and Find Full Text PDFAging is the main risk factor for cardiovascular diseases. In humans, cardiac aging remains poorly characterized. Most studies are based on chronological age (CA) and disregard biological age (BA), the actual physiological age (result of the aging rate on the organ structure and function), thus yielding potentially imperfect outcomes.
View Article and Find Full Text PDFCardiac tissue slices preserve the heterogeneous structure and multicellularity of the myocardium and allow its functional characterization. However, access to human ventricular samples is scarce. We aim to demonstrate that slices from small transmural core biopsies collected from living donors during routine cardiac surgery preserve structural and functional properties of larger myocardial specimens, allowing accurate electrophysiological characterization.
View Article and Find Full Text PDFIon channels have recently attracted attention as potential mediators of skin disease. Here, we explored the consequences of genetically encoded induction of the cell volume-regulating Ca2+-activated KCa3.1 channel (Kcnn4) for murine epidermal homeostasis.
View Article and Find Full Text PDFWe investigated whether the substrate for nitric oxide (NO) production, extracellular l-arginine, contributes to relaxations induced by activating small (SKCa) conductance Ca-activated potassium channels. In endothelial cells, acetylcholine increased H-l-arginine uptake, while blocking the SKCa and the intermediate (IKCa) conductance Ca-activated potassium channels reduced l-arginine uptake. A blocker of the y+ transporter system, l-lysine also blocked H-l-arginine uptake.
View Article and Find Full Text PDFThe epithelial intermediate-conductance calcium/calmodulin-regulated KCa3.1 channel is considered to be a regulator of intestine function by controlling chloride secretion and water/salt balance. Yet, little is known about the functional importance of KCa3.
View Article and Find Full Text PDFBackground: TRPV4 channels are calcium-permeable cation channels that are activated by several physicochemical stimuli. Accordingly, TRPV4 channels have been implicated in the regulation of osmosensing, mechanotransduction, thermosensation, and epithelial/endothelial barrier functions. Whether TRPV4 is also mechanistically implicated in melanoma cell proliferation is not clear.
View Article and Find Full Text PDFThe calcium/calmodulin-gated KCa3.1 channel regulates normal and abnormal mitogenesis by controlling K-efflux, cell volume, and membrane hyperpolarization-driven calcium-entry. Recent studies suggest modulation of KCa3.
View Article and Find Full Text PDFProtein kinase CK2α, one of the two catalytic isoforms of the protein kinase CK2 has been shown to contribute to tumor development, tumor proliferation and suppression of apoptosis in various malignancies. We conducted this study to investigate CK2 expression in different subtypes of Renal Cell Carcinoma (RCC) and in the benign oncocytoma. qRT-PCR, immunohistochemistry and Western blot analyses revealed that CK2α expression was significantly increased at the mRNA and protein levels in clear cell RCC (ccRCC).
View Article and Find Full Text PDFOpening of intermediate-conductance calcium-activated potassium channels (KC a 3.1) produces membrane hyperpolarization in the vascular endothelium. Here, we studied the ability of two new KC a 3.
View Article and Find Full Text PDFIn traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism.
View Article and Find Full Text PDFBackground And Purpose: The intermediate conductance calcium/calmodulin-regulated K channel K 3.1 produces hyperpolarizing K currents that counteract depolarizing currents carried by transient receptor potential (TRP) channels, and provide the electrochemical driving force for Cl and fluid movements. We investigated whether a deficiency in K 3.
View Article and Find Full Text PDFBackground: Ca2+-activated K+ channels have been implicated in cancer cell growth, metastasis, and tumor angiogenesis. Here we hypothesized that high mRNA and protein expression of the intermediate-conductance Ca2+-activated K+ channel, KCa3.1, is a molecular marker of clear cell Renal Cell Carcinoma (ccRCC) and metastatic potential and survival.
View Article and Find Full Text PDFDespite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation.
View Article and Find Full Text PDFSmall/intermediate conductance KCa channels (KCa2/3) are Ca(2+)/calmodulin regulated K(+) channels that produce membrane hyperpolarization and shape neurologic, epithelial, cardiovascular, and immunologic functions. Moreover, they emerged as therapeutic targets to treat cardiovascular disease, chronic inflammation, and some cancers. Here, we aimed to generate a new pharmacophore for negative-gating modulation of KCa2/3 channels.
View Article and Find Full Text PDFBackground: Cytochrome P450- and ω-hydrolase products (epoxyeicosatrienoic acids (EETs), hydroxyeicosatetraeonic acid (20-HETE)), natural omega-3 fatty acids (ω3), and pentacyclic triterpenes have been proposed to contribute to a wide range of vaso-protective and anti-fibrotic/anti-cancer signaling pathways including the modulation of membrane ion channels. Here we studied the modulation of intermediate-conductance Ca(2+)/calmodulin-regulated K(+) channels (K(Ca)3.1) by EETs, 20-HETE, ω3, and pentacyclic triterpenes and the structural requirements of these fatty acids to exert channel blockade.
View Article and Find Full Text PDFSmall-conductance (KCa2) and intermediate-conductance (KCa3.1) calcium-activated K(+) channels are voltage-independent and share a common calcium/calmodulin-mediated gating mechanism. Existing positive gating modulators like EBIO, NS309, or SKA-31 activate both KCa2 and KCa3.
View Article and Find Full Text PDFPolyunsaturated fatty acid (PUFA)-activated two-pore domain potassium channels (K2P ) have been proposed to be expressed in the pulmonary vasculature. However, their physiological or pathophysiological roles are poorly defined. Here, we tested the hypothesis that PUFA-activated K2P are involved in pulmonary vasorelaxation and that alterations of channel expression are pathophysiologically linked to pulmonary hypertension.
View Article and Find Full Text PDFBackground: KCa3.1 channels are calcium/calmodulin-regulated voltage-independent K(+) channels that produce membrane hyperpolarization and shape Ca(2+)-signaling and thereby physiological functions in epithelia, blood vessels, and white and red blood cells. Up-regulation of KCa3.
View Article and Find Full Text PDFBackground: The calmodulin/calcium-activated K(+) channel KCa3.1 is expressed in red and white blood cells, epithelia and endothelia, and possibly central and peripheral neurons. However, our knowledge about its contribution to neurological functions and behavior is incomplete.
View Article and Find Full Text PDF