The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 instigated the most serious global health crisis. Clinical presentation of COVID-19 frequently includes severe neurological and neuropsychiatric symptoms. However, it is presently unknown whether and to which extent pathological impairment of blood-brain barrier (BBB) contributes to the development of neuropathology during COVID-19 progression.
View Article and Find Full Text PDFMultiple paracrine factors are implicated in the regulation of barrier properties of human brain endothelial cells (BECs) in different physiologic and pathologic settings. We have recently demonstrated that autocrine secretion of basic fibroblast growth factor (bFGF) by BECs is necessary for the establishment of endothelial barrier (as demonstrated by high trans-endothelial electric resistance, TEER), whereas exogenous bFGF inhibits TEER in a concentration-dependent manner. In the present study we analysed the contribution of MAPK/ERK and STAT3 signalling pathways to the inhibitory effects of exogenous bFGF.
View Article and Find Full Text PDFMultiple paracrine factors regulate the barrier properties of human brain capillary endothelial cells (BCECs). Understanding the precise mode of action of these factors remains a challenging task, because of the limited availability of functionally competent BCECs and the use of serum-containing medium. In the present study, we employed a defined protocol for producing BCECs from human inducible pluripotent stem cells.
View Article and Find Full Text PDFImpairments of the blood-brain barrier (BBB) and vascular dysfunction contribute to Alzheimer's disease (AD) from the earliest stages. However, the influence of AD-affected astrocytes on the BBB remain largely unexplored. In the present study, we created an in vitro BBB using human-immortalized endothelial cells in combination with immortalized astroglial cell lines from the hippocampus of 3xTG-AD and wild-type mice (3Tg-iAstro and WT-iAstro, respectively).
View Article and Find Full Text PDFReversible electroporation is a temporary permeabilization of cell membrane through the formation of transient pores created by short high voltage electric pulses. This method has numerous applications in biology and biotechnology and has become an important technique in molecular medicine. Reversible electroporation is usually used to transfer macromolecules into the cells.
View Article and Find Full Text PDF