Heme, abundant in the mitochondria of cancer cells, is a key target for the anticancer activity of artemisinin (ART). Current strategies to enhance the anticancer activity of ART focus solely on its delivery to heme-enriched subcellular localizations while overlooking the decisive effects of ART-heme interactions. Here, we propose an ingenious strategy that synergizes mitochondria-targeted drug delivery and linker-mediated drug conformation modulation, thereby significantly enhancing the anticancer activity of ART.
View Article and Find Full Text PDFA critical challenge of existing cancer vaccines is to orchestrate the demands of antigen-enriched furnishment and optimal antigen-presentation functionality within antigen-presenting cells (APCs). Here, a complementary immunotherapeutic strategy is developed using dendritic cell (DC)-tumor hybrid cell-derived chimeric exosomes loaded with stimulator of interferon genes (STING) agonists (DT-Exo-STING) for maximized tumor-specific T-cell immunity. These chimeric carriers are furnished with broad-spectrum antigen complexes to elicit a robust T-cell-mediated inflammatory program through direct self-presentation and indirect DC-to-T immunostimulatory pathway.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1016/j.apsb.
View Article and Find Full Text PDFThe challenge of wound infections post-surgery and open trauma caused by multidrug-resistant bacteria poses a constant threat to clinical treatment. As a promising antimicrobial treatment, photothermal therapy can effectively resolve the problem of drug resistance in conventional antibiotic antimicrobial therapy. Here, we report a deep-penetration functionalized cuttlefish ink nanoparticle (CINP) for photothermal and immunological therapy of wound infections.
View Article and Find Full Text PDFSystematic administration of antibiotics to treat infections often leads to the rapid evolution and spread of multidrug-resistant bacteria. Here, an in situ-formed biotherapeutic gel that controls multidrug-resistant bacterial infections and accelerates wound healing is reported. This biotherapeutic gel is constructed by incorporating stable microbial communities (kombucha) capable of producing antimicrobial substances and organic acids into thermosensitive Pluronic F127 (polyethylene-polypropylene glycol) solutions.
View Article and Find Full Text PDFNeuroma formation after peripheral nerve transection often leads to severe neuropathic pain. Regenerative peripheral nerve interface has been shown to reduce painful neuroma in the clinic. However, no reports have investigated the underlying mechanisms, and no comparative animal studies on regenerative peripheral nerve interface and other means of neuroma prevention have been conducted to date.
View Article and Find Full Text PDFGenome-derived microRNAs (miRNAs or miRs) control post-transcriptional gene expression critical for various cellular processes. Recently, we have invented a novel platform technology to achieve high-yield production of fully humanized, bioengineered miRNA agents (hBERAs) for research and development. This study is aimed to produce and utilize a new biologic miR-34a-5p (or miR-34a) molecule, namely, hBERA/miR-34a, to delineate the role of miR-34a-5p in the regulation of mitochondrial functions in human carcinoma cells.
View Article and Find Full Text PDFTumor stemness has been reported to play important roles in cancers. However, a comprehensive analysis of tumor stemness remains to be performed to investigate the specific mechanisms and practical values of stemness in soft tissue sarcomas (STS). Here, we applied machine learning to muti-omic data of patients from TCGA-SARC and GSE21050 cohorts to reveal important roles of stemness in STS.
View Article and Find Full Text PDFWith the understanding of microRNA (miRNA or miR) functions in tumor initiation, progression, and metastasis, efforts are underway to develop new miRNA-based therapies. Very recently, we demonstrated effectiveness of a novel humanized bioengineered miR-124-3p prodrug in controlling spontaneous lung metastasis in mouse models. This study was to investigate the molecular and cellular mechanisms by which miR-124-3p controls tumor metastasis.
View Article and Find Full Text PDFUnderstanding pharmacokinetic (PK)-pharmacodynamic (PD) relationships is essential in translational research. Existing PK-PD models for combination therapy lack consideration of quantitative contributions from individual drugs, whereas interaction factor is always assigned arbitrarily to one drug and overstretched for the determination of pharmacologic synergism. Herein, we report a novel generic PK-PD model for combination therapy by considering apparent contributions from individual drugs coadministered.
View Article and Find Full Text PDFBeing the second most common type of primary bone malignancy in children and adolescents, Ewing Sarcoma (ES) encounters the dilemma of low survival rate with a lack of effective treatments. As an emerging approach to combat cancer, RNA therapeutics may expand the range of druggable targets. Since the genome-derived oncolytic microRNA-34a (miR-34a) is down-regulated in ES, restoration of miR-34a-5p expression or function represents a new therapeutic strategy which is, however, limited to the use of chemically-engineered miRNA mimics.
View Article and Find Full Text PDFMicroRNAs (miRNAs or miRs) are small noncoding RNAs derived from genome to control target gene expression. Recently we have developed a novel platform permitting high-yield production of bioengineered miRNA agents (BERA). This study is to produce and utilize novel fully-humanized BERA/miR-328-3p molecule (hBERA/miR-328) to delineate the role of miR-328-3p in controlling nutrient uptake essential for cell metabolism.
View Article and Find Full Text PDFWound infection has been a persistent problem that is common and costly. Thermosensitive hydrogel has been demonstrated to be a suitable dressing candidate due to its high moldability, easy administration and ability to maintain a moist topical environment at the wound bed. In the present study, a novel thermosensitive hydrogel was successfully prepared and characterized to have a porous inner structure and a sustained curcumin-releasing profile.
View Article and Find Full Text PDFThe nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a transcription factor in the regulation of many oxidative enzymes and efflux transporters critical for oxidative stress and cellular defense against xenobiotics. NRF2 is dysregulated in patient osteosarcoma (OS) tissues and correlates with therapeutic outcomes. Nevertheless, research on the NRF2 regulatory pathways and its potential as a therapeutic target is limited to the use of synthetic small interfering RNA (siRNA) carrying extensive artificial modifications.
View Article and Find Full Text PDFRecently, hypoxia inducible factor-1 (HIF-1) was reported to be correlated with isocitrate dehydrogenase 1 (IDH-1) in several types of tumors. However, the expression and significance of HIF-1 and IDH-1 in osteosarcoma is still unknown. In the present study, the expression levels of IDH-1 and HIF-1α in 35 formalin-fixed paraffin-embedded sections from osteosarcoma patients were investigated by immunohistochemistry.
View Article and Find Full Text PDFMetastasis is a major cause of mortality for cancer patients and remains as the greatest challenge in cancer therapy. Driven by multiple factors, metastasis may not be controlled by the inhibition of single target. This study was aimed at assessing the hypothesis that drugs could be rationally combined to co-target critical DNA, RNA and protein molecules to achieve "saturation attack" against metastasis.
View Article and Find Full Text PDFOsteosarcoma (OS) is the most common primary malignant bone tumor in children, and microRNA-34a (miR-34a) replacement therapy represents a new treatment strategy. This study was to define the effectiveness and safety profiles of a novel bioengineered miR-34a prodrug in orthotopic OS xenograft tumor mouse model. Highly purified pre-miR-34a prodrug significantly inhibited the proliferation of human 143B and MG-63 cells in a dose dependent manner and to much greater degrees than controls, which was attributed to induction of apoptosis and G2 cell cycle arrest.
View Article and Find Full Text PDFIsocitrate dehydrogenase 2 (IDH2) is a mitochondrial NADP-dependent isocitrate dehydrogenase. It is considered to be a novel tumor suppressor in several types of tumors. However, the role and related mechanism of IDH2 in osteosarcoma remain unknown.
View Article and Find Full Text PDFBackground: The authors conducted a meta-analysis to compare the effectiveness and safety of conservative and operative treatment for distal radius fracture.
Methods: PubMed, EMBASE, and the Cochrane Library were searched to identify the relevant studies published up to February of 2015. All randomized controlled trials published to compare the conservative and operative treatment were included in the study.
Osteosarcoma (OS) is the most common form of primary malignant bone tumor and prevalent among children and young adults. Recently we have established a novel approach to bioengineering large quantity of microRNA-34a (miR-34a) prodrug for miRNA replacement therapy. This study is to evaluate combination treatment with miR-34a prodrug and doxorubicin, which may synergistically suppress human OS cell growth via RNA interference and DNA intercalation.
View Article and Find Full Text PDFInt J Clin Exp Pathol
July 2015
Objective: This study aims to investigate the neuroprotective effect of Rho kinase inhibitor fasudil hydrochloride in ischemia/reperfusion injury N2a neuron.
Methods: In vitro, N2a cells induced by ischemia and ischemia-reperfusion were treated with fasudil hydrochloride, cell damage was analyzed by MTT. On the other hand, the cytoskeleton of N2a cells was scanned through immunofluorescence techniques by Confocal Laser Microscopy which stained with FITC-phalloidin for F-actin visualization.
Severe traumatic wounds are challenging to manage during surgery. The introduction of vacuum-assisted closure (VAC) is a breakthrough in wound management. The aim of the present study was to investigate the effect of VAC on cytokines in wounds during the management of severe traumatic wounds following initial debridement.
View Article and Find Full Text PDF