Mucopolysaccharidosis type IIIA (MPS IIIA) is a rare paediatric lysosomal storage disorder, caused by the progressive accumulation of heparan sulphate, resulting in neurocognitive decline and behavioural abnormalities. Anecdotal reports from paediatricians indicate a more severe neurodegeneration in MPS IIIA patients, following infection, suggesting inflammation as a potential driver of neuropathology. To test this hypothesis, we performed acute studies in which WT and MPS IIIA mice were challenged with the TLR3-dependent viral mimetic poly(I:C).
View Article and Find Full Text PDFAllogeneic hematopoietic cell transplantation (HCT) benefits children with Hurler syndrome (MPS-IH). However, survivors remain burdened by substantial MPS-IH related residual disease. We studied the feasibility, safety and biochemical impact of augmentative recombinant intravenous enzyme replacement therapy (IV-ERT) post transplantation.
View Article and Find Full Text PDFThe pediatric lysosomal storage disorder mucopolysaccharidosis type II is caused by mutations in IDS, resulting in accumulation of heparan and dermatan sulfate, causing severe neurodegeneration, skeletal disease, and cardiorespiratory disease. Most patients manifest with cognitive symptoms, which cannot be treated with enzyme replacement therapy, as native IDS does not cross the blood-brain barrier. We tested a brain-targeted hematopoietic stem cell gene therapy approach using lentiviral IDS fused to ApoEII (IDS.
View Article and Find Full Text PDFRecombinant adeno-associated viruses (AAVs) are popular in vivo gene transfer vehicles. However, vector doses needed to achieve therapeutic effect are high and some target tissues in the central nervous system remain difficult to transduce. Gene therapy trials using AAV for the treatment of neurological disorders have seldom led to demonstrated clinical efficacy.
View Article and Find Full Text PDFPurpose: Development of a human mitochondrial gene delivery vector is a critical step in the ability to treat diseases arising from mutations in mitochondrial DNA. Although we have previously cloned the mouse mitochondrial genome in its entirety and developed it as a mitochondrial gene therapy vector, the human mitochondrial genome has been dubbed unclonable in E. coli, due to regions of instability in the D-loop and tRNA(Thr) gene.
View Article and Find Full Text PDF