Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls.
View Article and Find Full Text PDFWe investigate optical transmission in cavity magnon polaritons and discover a complex multi-window magnetically induced transparency and a bistability with magnetic and optical characteristics. With the regulation of Kerr nonlinear effects and driven fields, a complex multi-window resonant transmission with fast and slow light effects appears, which includes transparency and absorption windows. The magnetically induced transparency and absorption can be explained by the destructive and constructive interference between different excitation pathways.
View Article and Find Full Text PDFThe nonlinear Landau-Zener-Stückelberg-Majorana (LZSM) tunneling dynamics and interferometry of an extended Bose-Hubbard flux ladder are studied. Based on the mean-field theory, the dispersion relation of the system is given, and it is found that loop structures periodically appear in the band structure and the nonlinear LZSM interference occurs naturally without Floquet engineering, which can be effectively modulated by atomic interactions. The nonlinear energy bands and the unique chirality feature of the flux ladder system can be identified through the dynamics of nonlinear Landau-Zener tunneling.
View Article and Find Full Text PDFWe study the ground-state stability of the trapped one-dimensional Bose-Einstein condensate under a density-dependent gauge field by variational and numerical methods. The competition of density-dependent gauge field and mean-field atomic interaction induces the instability of the ground state, which results in irregular dynamics. The threshold of the gauge field for exciting the instability is obtained analytically and confirmed numerically.
View Article and Find Full Text PDFThe two-leg magnetic ladder is the simplest and ideal model to reflect the coupling effects of lattice and magnetic field. It is of great significance to study some novel phases, topological characteristics, and chiral characteristics in condensed matter physics. In particular, the left-right leg degree of freedom can be regarded as a pseudospin, and the two-leg magnetic ladder also provides an ideal platform for the study of spin dynamics.
View Article and Find Full Text PDFBackground: The neurobiology of the Major depressive disorder (MDD) with anxiety is still unclear. The present study aimed to explore the brain correlates of MDD with and without anxiety in men and women during resting-state fMRI.
Methods: Two hundred and fifty-four patients with MDD (MDD with anxiety, N = 152) and MDD without anxiety, N = 102) and 228 healthy controls (HCs) participated in this study.
We analytically and numerically discuss the dynamics of two pseudospin components Bose-Einstein condensates (BECs) with spin-orbit coupling (SOC) in deep optical lattices. Rich localized phenomena, such as breathers, solitons, self-trapping, and diffusion, are revealed and strongly depend on the strength of the atomic interaction, SOC, Raman detuning, and the spin polarization (i.e.
View Article and Find Full Text PDFWe analytically and numerically study the different types of solitary wave in the two-component helicoidal spin-orbit coupled Bose-Einstein condensates (BECs). Adopting the multiscale perturbation method, we derive the analytical bright and dark solitary wave solutions of the system, and the stationary and moving bright (dark) solitary waves are obtained. The effects of spin-orbit coupling, the helicoidal gauge potential, the momentum, the Zeeman splitting, and the atomic interactions on the solitary wave types are discussed, and it is found that the coupling of these physical parameters can manipulate different types of solitary waves in the system.
View Article and Find Full Text PDFThe stability and superfluidity of the Bose-Einstein condensate in two-leg ladder with magnetic field are studied. The dispersion relation and the phase diagram of the system are obtained. Three phases are revealed: the Meissner phase, the biased ladder (BL) phase, and the vortex phase.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2021
We theoretically study the ground-state phases and superfluidity of tunable spin-orbit-coupled Bose-Einstein condensates (BECs) under the periodic driving of Raman coupling. An effective time-independent Floquet Hamiltonian is proposed by using a high-frequency approximation, and we find single-particle dispersion, spin-orbit-coupling, and asymmetrical nonlinear two-body interaction can be modulated effectively by the periodic driving. The critical Raman coupling characterizing the phase transition and relevant physical quantities in three different phases (the stripe phase, plane-wave phase, and zero momentum phase) are obtained analytically.
View Article and Find Full Text PDFFunctional and nutritional compounds are increased during foxtail millet germination while bad smell is produced due to the fatty acid oxidation. To eliminate the unpleasant aroma, the origins of the volatiles must be known. A comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry showed forty-nine volatiles containing 8 ketones, 10 aldehydes, 20 alkanes, 4 alcohols, 5 alkenes, and 2 furans were tentatively identified, and they increased during the germination of the foxtail millet.
View Article and Find Full Text PDFWe theoretically study the modulation instability (MI) of the two-component helicoidal spin-orbit coupled Bose-Einstein condensates (BECs). The effects of spin-orbit coupling, the helicoidal gauge potential, and atomic interactions on MI are investigated. The results indicate that the presence of the helicoidal gauge potential breaks the symmetric properties of MI, strongly modifies the distribution of the MI region and the MI gain in parameters space, and the MI can be excited even when the miscibility condition for the atomic interactions is satisfied.
View Article and Find Full Text PDFIntroduction: Stress urinary incontinence is a major health problem, and several clinical guidelines have been formulated and released regarding this in different countries. However, the recommendations in these guidelines formulated by different organisations and countries are inconsistent. This review aims to conduct a critical appraisal of clinical practice guidelines for the diagnosis and treatment of stress urinary incontinence.
View Article and Find Full Text PDFLots of two-dimensional (2D) materials have been predicted theoretically and further confirmed in experiments, and have wide applications in nanoscale electronic, optoelectronic and thermoelectric devices. In this work, the thermoelectric properties of ATeI (A = Sb and Bi) monolayers are systematically investigated according to semiclassical Boltzmann transport theory. It is found that spin-orbit coupling (SOC) has an important effect on the electronic transport coefficients of p-type doping, but a negative influence on n-type doping.
View Article and Find Full Text PDFStrain engineering is a very effective method to continuously tune the electronic, topological, optical and thermoelectric properties of materials. In this work, strain-dependent phonon transport of recently-fabricated antimonene (Sb monolayers) under biaxial strain is investigated using a combination of first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). It is found that the ZA dispersion of antimonene with strain less than -1% gives imaginary frequencies, which suggests that compressive strain can induce structural instability.
View Article and Find Full Text PDFAn investigation of the potential neuroprotective natural product constituents of the rhizomes of Typhonium giganteum led to the isolation of two new cerebrosides, typhonosides E (1) and F (2), along with 11 known analogues (3-13). The structures of compounds 1 and 2 were elucidated by spectroscopic data interpretation. The activity of these compounds against glutamate-induced cell apoptosis was investigated in PC12 cells.
View Article and Find Full Text PDFA series of new aryloxyacetamide derivatives 10a-s and 14a-m are designed and synthesized. Their protective activities against the glutamate-induced cell death were investigated in differentiated rat pheochromocytoma cells (PC12 cells). Most compounds exhibited neuroprotective effects, especially for 10m, 10r, 14b and 14c, which showed potential protection of PC12 cells at three doses (0.
View Article and Find Full Text PDF