Publications by authors named "Ai-Wei Lee"

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) not only posed major health and economic burdens to international societies but also threatens patients with comorbidities and underlying autoimmune disorders, including Crohn's disease (CD) patients. As the vaccinated population is gradually relieved from the stress of the latest omicron variant of SARS-CoV-2 due to competent immune responses, the anxiety of CD patients, especially those on immunosuppressive treatment, has not subsided. Whether the use of immunosuppressants for remission of CD outweighs the potential risk of severe coronavirus disease 2019 (COVID-19) has long been discussed.

View Article and Find Full Text PDF

Platelets assume a pivotal role in the cardiovascular diseases (CVDs). Thus, targeting platelet activation is imperative for mitigating CVDs. Ginkgetin (GK), from Ginkgo biloba L, renowned for its anticancer and neuroprotective properties, remains unexplored concerning its impact on platelet activation, particularly in humans.

View Article and Find Full Text PDF

Colorectal cancer (CRC) ranks among the most prevalent forms of cancer globally, and its late-stage survival outcomes are less than optimal. A more nuanced understanding of the underlying mechanisms behind CRC's development is crucial for enhancing patient survival rates. Existing research suggests that the expression of Cell Wall Biogenesis 43 C-Terminal Homolog () is reduced in CRC.

View Article and Find Full Text PDF

Oxaliplatin (OXA) is the first-line chemotherapy drug for metastatic colorectal cancer (mCRC), and the emergence of drug resistance is a major clinical challenge. Although there have been numerous studies on OXA resistance, but its underlying molecular mechanisms are still unclear. This study aims to identify key regulatory genes and pathways associated with OXA resistance.

View Article and Find Full Text PDF

Poly(methacrylic acid) (PMAA) brushes were tethered on a silicon surface possessing a 500-nm hole array via atom transfer radical polymerization after the modification of the halogen group. Dextran-biotin (DB) was sequentially immobilized on the PMAA chains to obtain a P(MAA-DB) brush surrounding the hole edges on the silicon surface. After loading antibiotics inside the holes, biphenyl-4,4'-diboronic acid (BDA) was used to cross-link the P(MAA-DB) chains through the formation of boronate esters to cap the hole and block the release of the antibiotics.

View Article and Find Full Text PDF

Skin is an important organ that mainly functions as a barrier. Skin diseases can damage a person's self-confidence and reduce their willingness to socialize, as well as their social behavior and willingness. When the skin appearance is abnormal, in addition to affecting the quality of life, it often leads to personal, social, and psychological dysfunction and even induces depression.

View Article and Find Full Text PDF

Squamous and anaplastic thyroid cancers are the most aggressive and life-threatening cancer types in humans, with the involvement of lymph nodes in 59% of cases and distant metastases in 26% of cases of all thyroid cancers. The median survival of squamous thyroid cancer patients is < 8 months and therefore is of high clinical concern. Here, we show that both VEGFC and VEGFR2/KDR are overexpressed in thyroid cancers, indicating that VEGF/VEGFR signaling plays a carcinogenic role in thyroid cancer development.

View Article and Find Full Text PDF

Design, fabrication, and control of photoreactive supramolecular macromers─which are composed of a thermoresponsive polymer backbone and photoreactive nucleobase end-groups─to achieve the desired physical-chemical performance and provide the high efficiency required for chemotherapy drug delivery purposes still present challenges. Herein, a difunctional cytosine-terminated supramolecular macromer was successfully obtained at high yield. UV-irradiation induces the formation of cytosine photodimers within the structure.

View Article and Find Full Text PDF

This study provides a significant contribution to the development of multiple hydrogen-bonded supramolecular nanocarrier systems by demonstrating that controlling the hydrogen bond strength within supramolecular polymers represents a crucial factor to tailor the drug delivery performance and enhance the effectiveness of cancer therapy. Herein, we successfully developed two kinds of poly(ethylene glycol)-based telechelic polymers Cy-PEG and UrCy-PEG having self-constituted double and quadruple hydrogen-bonding cytosine (Cy) and ureido-cytosine (UrCy) end-capped groups, respectively, which directly assemble into spherical nanogels with a number of interesting physical characteristics in aqueous solutions. The UrCy-PEG nanogels containing quadruple hydrogen-bonded UrCy dimers exhibited excellent long-term structural stability in a serum-containing biological medium, whereas the double hydrogen-bonded Cy moieties could not maintain the structural integrity of the Cy-PEG nanogels.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed pH-responsive supramolecular micelles using a specific polymer that can form stable, uniform spherical structures in water, making them ideal for drug delivery.
  • These micelles show promising features like biocompatibility and the ability to tailor drug capacity, allowing for controlled drug release based on the surrounding pH, making them suitable for cancer therapy.
  • Cytotoxicity tests indicated that these micelles can release drugs effectively in acidic environments typically found in cancer cells, enhancing their ability to induce cell death and providing a potential strategy for chemotherapy.
View Article and Find Full Text PDF

Water-soluble conjugated polymers (WCPs) composed of a hydrophobic polythiophene main chain with hydrophilic tertiary amine side-chains can directly self-assemble into sphere-like nano-objects in an aqueous solution due to phase separation between the hydrophilic and hydrophobic segments of the polymeric structure. Due to the presence of gas-responsive tertiary amine moieties in the spherical structure, the resulting polymers rapidly and reversibly tune their structural features, surface charge, and fluorescence performance in response to alternating carbon dioxide (CO) and nitrogen (N) bubbling, which leads to significantly enhanced fluorescence and surface charge switching properties and a stable cycle of on and off switching response. studies confirmed that the CO-treated polymers exhibited extremely low cytotoxicity and enhanced cellular uptake ability in normal and tumor cells, and thus possess significantly improved fluorescence stability, distribution, and endocytic uptake efficiency within cellular organisms compared to the pristine polymer.

View Article and Find Full Text PDF

Physically cross-linked supramolecular polymers composed of a hydrophobic poly(epichlorohydrin) backbone with hydrogen-bonding cytosine pendant groups and hydrophilic poly(ethylene glycol) (PEG) side chains spontaneously self-assemble to form highly controlled, reversible supramolecular polymer networks (SPNs) because of cytosine-induced transient cross-linking. Owing to their simple synthesis procedure and ease of tuning the cytosine and PEG contents to obtain varying degrees of SPNs within the polymer matrix, the resulting polymers exhibit a unique surface morphology, wide-range tunable mechanical/rheological properties, and surface wettability behavior as well as high biocompatibility and structural stability in normal cell- and red blood cell-rich media. Cell culture experiments and fluorescent images clearly demonstrated that the incorporation of cytosine and PEG units into the SPN-based polymer substrates efficiently promoted cellular attachment and accelerated cell growth.

View Article and Find Full Text PDF

Lycopene is the most abundant carotenoid in tomatoes, which has been identified to have the properties of anti-inflammation in addition to the capability to inhibit the expression of adhesion molecules. Intercellular adhesion molecules play a critical role in the pathogenesis of psoriasis. Here, we report that the topical use of a lycopene decreased imiquimod (IMQ)-induced psoriasis-like inflammatory responses, the progress of which was based on adhesion molecules.

View Article and Find Full Text PDF

The geometry of resonant absorbers (RA) is varied by tryptic digestion to design a probe platform. The process includes fabrication of a line array of poly(methacrylic acid) (PMAA) brush as an RA, tailed by the immobilization of gelatin. The gelatin-modified PMAA RA is a kind of one-dimensional plasmonic grating, possessing an optical feature with a characteristic absorption peak.

View Article and Find Full Text PDF

Electrospun polyacrylonitrile fiber membranes (EPFMs) were coated with multilayer films, assembled using the layer-by-layer (LbL) technique through the alternate deposition of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA), to develop an antithrombogenic drug release membrane for hemodialysis. Methylene blue (MB) and heparin (HEP) were attached to the PAH and PAA multilayers, respectively, as model drug and antithrombogenic agent to investigate the dual functionality of the membranes. The positively (PAH, MB) and negatively (PAA, HEP) charged groups generated a supermolecular polyelectrolyte multilayer film (SPF) capable of loading high amounts of MB and HEP on the EPFMs at appropriate composition.

View Article and Find Full Text PDF

The association between psoriasis and cardiovascular disease risk has been supported by recent epidemiological data. Patients with psoriasis have an increased adjusted relative risk for myocardial infarction. As such, the cardiovascular risk conferred by severe psoriasis may be comparable to what is seen with other well-established risk factors, such as diabetes mellitus.

View Article and Find Full Text PDF

The new concept of modifying and tailoring the properties of existing two-dimensional (2D) nanomaterials by invoking the assembly of supramolecular networks upon association with a adenine-functionalized macromer (A-PPG) has significant potential to facilitate the development of highly water-dispersible few-layered 2D nanosheets. In this study, we propose that water-soluble A-PPG directly self-assembles into a long-period stacking-ordered lamellar structure over the surface of hexagonal boron nitride (BN) in aqueous solution, due to the efficient non-covalent interactions between A-PPG and BN nanosheets. The layer number of BN nanosheets can be easily tuned by altering the mass ratio of the A-PPG and BN blend, and the resulting exfoliated nanosheets also exhibit excellent temperature/pH-responsive behavior, biocompatibility and extremely high drug-loading capacity (up to 36.

View Article and Find Full Text PDF

An ultrasensitive light-responsive block copolymer, a combination of a multiarmed poly(ethylene glycol)--poly(caprolactone) polymer as a water-soluble element and maleimide-anthracene linkers as a photosensitive group, was successfully synthesized and rapidly self-assembled to form spherical micellar nanoparticles in aqueous media and phosphate-buffered saline. Their unique characteristics, such as extremely low critical micelle concentration, desirable micellar stability, well-controlled light-responsiveness, tailorable drug-loading content, and ultrasensitive light-induced drug release, make these micelles potential candidates for development of a more effective, safer drug delivery platform for cancer treatment. studies revealed that the drug-loaded micelles exhibited high structural stability in serum-containing media and very low toxicity toward normal and cancer cells under physiological conditions.

View Article and Find Full Text PDF

Psoriasis is a chronic inflammatory skin disease. Even though scientists predict that abnormalities in lipid metabolism play an important role in the pathogenesis of psoriasis, the actual underlying mechanisms are still unclear. Therefore, understanding the possible relationship between mechanisms of the occurrence of psoriasis and dyslipidemia is an important issue that may lead to the development of effective therapies.

View Article and Find Full Text PDF

Dipeptidyl peptidase-4 (DPP-4) inhibitors are a well-known and novel class of oral antihyperglycaemic drugs. DPP-4 inhibition facilitates ulcer healing in patients with diabetes. However, the actual mechanisms, which are independent of lower blood glucose levels, are still unknown.

View Article and Find Full Text PDF

Anaplastic carcinoma of the thyroid (ATC), also called undifferentiated thyroid cancer, is the least common but most aggressive and deadly thyroid gland malignancy of all thyroid cancers. The aim of this study is to explore essential biomarker and use CRISPR/Cas9 with lentivirus delivery to establish a gene-target therapeutic platform in ATC cells. At the beginning, the gene expression datasets from 1036 cancers from CCLE and 8215 tumors from TCGA were collected and analyzed, showing EGFR is predominantly overexpressed in thyroid cancers than other type of cancers ( = 0.

View Article and Find Full Text PDF

Self-assembled pH-responsive polymeric micelles, a combination of hydrophilic poly(ethylene glycol) segments and hydrogen bonding interactions within a biocompatible polyurethane substrate, can spontaneously self-assemble into highly controlled, nanosized micelles in aqueous solution. These newly developed micelles exhibit excellent pH-responsive behavior and biocompatibility, highly controlled drug (doxorubicin; DOX) release behavior, and high drug encapsulation stability in different aqueous environments, making the micelles highly attractive potential candidates for safer, more effective drug delivery in applications such as cancer chemotherapy. In addition, in vitro cell studies revealed the drug-loaded micelles possessed excellent drug entrapment stability and low cytotoxicity toward macrophages under normal physiological conditions (pH 7.

View Article and Find Full Text PDF

Background: In addition to conventional approaches, detecting and characterizing CTCs in patient blood allows for early diagnosis of cancer metastasis.

Methods: We blended poly(ethylene oxide) (PEO) into nylon-6 through electrospinning to generate a fibrous matbased circulating tumour cells (CTCs) assay. The contents of nylon-6 and PEO in the electrospun blend fibrous mats (EBFMs) were optimized to facilitate high cell-substrate affinity and low leukocyte adsorption.

View Article and Find Full Text PDF

Prolonged exposure to gamma-hydroxybutyric acid (GHB) would cause drug intoxication in which impaired cognitive function results from enhanced hippocampal oxidative stress may serve as a major symptom in this deficiency. Considering melatonin possesses significant anti-oxidative efficacy, this study aimed to determine whether melatonin would successfully promote the nuclear factor erythroid 2-related factor 2 and antioxidant responsive element (Nrf2-ARE) signaling, depress oxidative stress, and rescue hippocampal bioenergetics and cognitive function following drug intoxication injury. Adolescent rats subjected to 10 days of GHB were received melatonin at doses of either 10 or 100 mg/kg.

View Article and Find Full Text PDF

In this study we used the poly(N-isopropylacrylamide) (PNIPAAm) as a medium to blend with an organic DNA, herring sperm DNA (HSD), to generate PNIPAAm-HSD supramolecular complexes. Bio-multiple hydrogen bonding (BMHB) between PNIPAAm and HSD was investigated that changed the temperature responsiveness of PNIPAAm relatively to the HSD concentrations. With blending the HSD into PNIPAAm matrix, the phase separation in solution is completely opposite from that of neat PNIPAAm.

View Article and Find Full Text PDF