Publications by authors named "Ai-Jiao Guan"

Macrocyclic conformations play a crucial role in regulating their properties. Our understanding of the determinants to control macrocyclic conformation interconversion is still in its infancy. Here we present a macrocycle, octamethyl cyclo[4](1,3-(4,6)-dimethylbenzene)[4]((4,6-benzene)(1,3-dicarboxylate) (OC-4), that can exist at 298 K as two stable atropisomers with C and C symmetry denoted as C-OC-4 and C-OC-4, respectively.

View Article and Find Full Text PDF

Molecular folding regulation with environmental stimuli is critical in living and artificial molecular machine systems. Herein, we described a macrocycle, cyclo[4] (1,3-(4,6-dimethyl)benzene)[4](1,3-(4,6-dimethyl)benzene)(4-pyridine). Under 298 K, it has three stable stiff atropisomers with names as 1 (C symmetry), 2 (C symmetry), and 3 (C symmetry).

View Article and Find Full Text PDF

Chirality at a supramolecular level is currently attracting great attention attributed to rapid developments in supramolecular chemistry. Herein, we report a new type of chiral self-assembly based on the cyanine dye MTC. The chiral H-aggregates of MTC could form spontaneously from achiral J-aggregates, and could return back to achiral J-aggregates in high concentration on increasing the solution temperature.

View Article and Find Full Text PDF

G-quadruplex has attracted considerable attention due to their prevalent distribution in functional genomic regions and transcripts, which can importantly influence biological processes such as regulation of telomere maintenance, gene transcription and gene translation. Artificial receptor study has been developed for accurate identification of G-quadruplex from DNA species, since it is important for the G-quadruplex related basic research, clinical diagnosis, and therapy. Herein, fluorescent dye ThT-E, a derivative of the known fluorescence probe Thioflavin T (ThT), was designed and synthesized to effectively differentiate various G-quadruplex structures from other nucleic acid forms.

View Article and Find Full Text PDF

It is found that G-quadruplexes have important functions in biological systems, such as gene expression. Molecules which can stabilize the G-quadruplex structure may have potential application in regulating the expression of gene. A series of methylazacalix[n]pyridine (n=4, 6, 7, 8, 9) has been tested to stabilize the intermolecular human telomeric G-quadruplex (T12 and H12), intramolecular TBA, c-kit and bcl-2 G-quadruplex by CD denaturation experiments.

View Article and Find Full Text PDF

Nucleic acid based molecular device is a developing research field which attracts great interests in material for building machinelike nanodevices. G-quadruplex, as a new type of DNA secondary structures, can be harnessed to construct molecular device owing to its rich structural polymorphism. Herein, we developed a switching system based on G-quadruplexes and methylazacalix[6]pyridine (MACP6).

View Article and Find Full Text PDF

The G-quadruplex ligands database (G4LDB, http://www.g4ldb.org) provides a unique collection of reported G-quadruplex ligands to streamline ligand/drug discovery targeting G-quadruplexes.

View Article and Find Full Text PDF

Calixaromatics have attracted much attention on molecular recognition owing to their flexible conformations, cavity structures, versatile recognition properties, and functions. However, conformational control of calixaromatics is still a challenging topic in the field of calixaromatics. Therefore, we explore the possibility to control the chirality of achiral calixaromatics, methylazacalix[6]pyridine (abbreviated as MACP6), by templating of DNA.

View Article and Find Full Text PDF

A novel trend in G-quadruplex ligand design is to build a binder that is able to not only discriminate G-quadruplex from duplex-DNA, but also among various G-quadruplex structures. Methylazacalix[6]pyridine (MACP6), a new type of azacalixarene with flexible conformation, exhibits induced circular dichroism signals when interacted with most of G-quadruplexes. The intensities of the induced signals are strongly dependent on the topology of G-quadruplexes.

View Article and Find Full Text PDF