Introduction: Singapore was one of 29 countries worldwide affected by severe acute respiratory syndrome (SARS) in 2003.
Materials And Methods: There were 238 cases identified during the outbreak. We performed a retrospective analysis of the clinical and laboratory data of 234 patients admitted to Tan Tock Seng Hospital and Singapore General Hospital.
We used a regression model to examine the impact of influenza on death rates in tropical Singapore for the period 1996-2003. Influenza A (H3N2) was the predominant circulating influenza virus subtype, with consistently significant and robust effect on mortality rates. Influenza was associated with an annual death rate from all causes, from underlying pneumonia and influenza, and from underlying circulatory and respiratory conditions of 14.
View Article and Find Full Text PDFA novel severe acute respiratory syndrome-associated coronavirus (SARS-CoV) has been discovered. The detection of both antigens and antibodies in SARS-CoV from human specimens with suspected SARS plays an important role in preventing infection. We developed a novel rapid immunochromatographic test (RICT) based on the sandwich format enzyme immunoassay (EIA) with an all-in-one device for detecting the native nucleocapsid antigen (N-Ag) of SARS-CoV using monoclonal antibodies (MoAbs), which we produced by immunizing recombinant N-Ag to mice.
View Article and Find Full Text PDFBackground: Epidemiological investigations of infectious disease are mainly dependent on indirect contact information and only occasionally assisted by characterization of pathogen sequence variation from clinical isolates. Direct sequence analysis of the pathogen, particularly at a population level, is generally thought to be too cumbersome, technically difficult, and expensive. We present here a novel application of mass spectrometry (MS)-based technology in characterizing viral sequence variations that overcomes these problems, and we apply it retrospectively to the severe acute respiratory syndrome (SARS) outbreak in Singapore.
View Article and Find Full Text PDFSevere acute respiratory syndrome (SARS) is caused by a novel and highly infectious virus named SARS coronavirus (SARS-CoV). Among the serological tests currently available for the detection of SARS-CoV, a whole-virus-based immunofluorescence assay (IFA) was considered one of the most sensitive assays and served as a "gold standard" during the SARS epidemic in Singapore in 2003. However, the need to manipulate live SARS-CoV in the traditional IFA limits its wide application due to the requirement for a biosafety level 3 laboratory and the risk of laboratory infection.
View Article and Find Full Text PDFSevere acute respiratory syndrome (SARS) is caused by a novel coronavirus (SARS-CoV). In a longitudinal cross-sectional study, we determined the prevalence of virus in bodily excretions and time of seroconversion in discharged patients with SARS. Conjunctival, throat, stool, and urine specimens were collected weekly from 64 patients and tested for SARS-CoV RNA by real-time polymerase chain reaction; serum samples were collected weekly and tested for SARS-CoV antibody with indirect enzyme immunoassay and immunofluorescence assay.
View Article and Find Full Text PDFBackground: The SARS coronavirus is the etiologic agent for the epidemic of the Severe Acute Respiratory Syndrome. The recent emergence of this new pathogen, the careful tracing of its transmission patterns, and the ability to propagate in culture allows the exploration of the mutational dynamics of the SARS-CoV in human populations.
Methods: We sequenced complete SARS-CoV genomes taken from primary human tissues (SIN3408, SIN3725V, SIN3765V), cultured isolates (SIN848, SIN846, SIN842, SIN845, SIN847, SIN849, SIN850, SIN852, SIN3408L), and five consecutive Vero cell passages (SIN2774_P1, SIN2774_P2, SIN2774_P3, SIN2774_P4, SIN2774_P5) arising from SIN2774 isolate.
Severe acute respiratory syndrome (SARS) is an infectious disease caused by a newly identified human coronavirus (SARS-CoV). Currently, no effective drug exists to treat SARS-CoV infection. In this study, we investigated whether a panel of commercially available antiviral drugs exhibit in vitro anti-SARS-CoV activity.
View Article and Find Full Text PDFSevere acute respiratory syndrome (SARS) is a novel infectious disease caused by the SARS-associated coronavirus (SARS-CoV). There are four major structural proteins in the SARS-CoV, including the nucleocapsid, spike, membrane, and small envelope proteins. In this study, two sets of truncated fragments of spike protein were generated, the first were approximately 210-bp nonoverlapping fragments and the second were overlapping segments of 750 to 900 bp.
View Article and Find Full Text PDFWe describe a patient with severe acute respiratory syndrome (SARS) whose clinical symptoms were masked by Escherichia coli bacteremia. SARS developed in a cluster of healthcare workers who had contact with this patient. SARS was diagnosed when a chest infiltrate developed and when the patient's brother was hospitalized with acute respiratory failure.
View Article and Find Full Text PDFTo identify a major antigenic determinant for use in the development of a rapid serological diagnostic test for severe acute respiratory syndrome (SARS) coronavirus infection and to study the immune response during SARS coronavirus infection in humans, we cloned the full length and six truncated fragments of the nucleocapsid gene, expressed them, and purified them as glutathione S-transferase-tagged recombinant proteins. The reactivities of the recombinant proteins to a panel of antibodies containing 33 SARS coronavirus-positive sera and 66 negative sera and to antibodies against other animal coronaviruses were screened. A truncated 195-amino-acid fragment from the C terminus of the nucleocapsid protein (N195) was identified that had a strong ability to detect antibodies against SARS coronavirus.
View Article and Find Full Text PDFA new coronavirus (severe acute respiratory syndrome coronavirus [SARS-CoV]) has been identified to be the etiological agent of severe acute respiratory syndrome. Given the highly contagious and acute nature of the disease, there is an urgent need for the development of diagnostic assays that can detect SARS-CoV infection. For determination of which of the viral proteins encoded by the SARS-CoV genome may be exploited as diagnostic antigens for serological assays, the viral proteins were expressed individually in mammalian and/or bacterial cells and tested for reactivity with sera from SARS-CoV-infected patients by Western blot analysis.
View Article and Find Full Text PDFBackground: Severe acute respiratory syndrome (SARS) is a newly recognized infectious disease that has recently emerged in East Asia and North America. Although the clinical features of acute infection have been well described, mildly symptomatic or asymptomatic infections have not been well characterized.
Objective: To assess the spectrum of illness in health-care workers (HCWs).
Severe acute respiratory syndrome (SARS) has caused major outbreaks worldwide, resulting in an urgent need to obtain sensitive and accurate diagnosis of this disease. PCR-based detection methods were developed for use on a variety of samples, including blood. Eighteen subjects were investigated, and results indicated that blood samples contain sufficient virus for detection by using quantitative real-time PCR.
View Article and Find Full Text PDFBackground: The worldwide outbreak of severe acute respiratory syndrome (SARS) is associated with a newly discovered coronavirus, SARS-associated coronavirus (SARS-CoV). We did clinical and experimental studies to assess the role of this virus in the cause of SARS.
Methods: We tested clinical and postmortem samples from 436 SARS patients in six countries for infection with SARS-CoV, human metapneumovirus, and other respiratory pathogens.
Background: A worldwide outbreak of severe acute respiratory syndrome (SARS) has been associated with exposures originating from a single ill health care worker from Guangdong Province, China. We conducted studies to identify the etiologic agent of this outbreak.
Methods: We received clinical specimens from patients in seven countries and tested them, using virus-isolation techniques, electron-microscopical and histologic studies, and molecular and serologic assays, in an attempt to identify a wide range of potential pathogens.
Singapore experienced a large epidemic of hand, foot and mouth disease (HFMD) in 2000. After reviewing HFMD notifications from doctors and child-care centers, we found that the incidence of HFMD rose in September and declined at the end of October. During this period, 3,790 cases were reported.
View Article and Find Full Text PDF