Publications by authors named "Ai-Dong Qi"

The orphan receptor GPR17 has been reported to be activated by UDP, UDP-sugars, and cysteinyl leukotrienes, and coupled to intracellular Ca(2+) mobilization and inhibition of cAMP accumulation, but other studies have reported either a different agonist profile or lack of agonist activity altogether. To determine if GPR17 is activated by uracil nucleotides and leukotrienes, the hemagglutinin-tagged receptor was expressed in five different cell lines and the signaling properties of the receptor were investigated. In C6, 1321N1, or Chinese hamster ovary (CHO) cells stably expressing GPR17, UDP, UDP-glucose, UDP-galactose, and cysteinyl leukotriene C4 (LTC4) all failed to promote inhibition of forskolin-stimulated cAMP accumulation, whereas both UDP and UDP-glucose promoted marked inhibition (>80%) of forskolin-stimulated cAMP accumulation in C6 and CHO cells expressing the P2Y14 receptor.

View Article and Find Full Text PDF

The P2Y(4) receptor is selectively targeted to the apical membrane in polarized epithelial cell lines and has been shown to play a key role in intestinal chloride secretion. In this study, we delimit a 23 amino acid sequence within the P2Y(4) receptor C-tail that directs its apical targeting. Using a mutagenesis approach, we found that four hydrophobic residues near the COOH-terminal end of the signal are necessary for apical sorting, whereas two basic residues near the NH(2)-terminal end of the signal are involved to a lesser extent.

View Article and Find Full Text PDF

Background And Purpose: The P2Y(1) receptor promotes chloride secretion in epithelial cells, a process critical for regulation of extracellular ion and fluid levels. Here we have examined the role of phosphorylation in agonist-induced internalization of P2Y(1) receptors.

Experimental Approach: A high-affinity radiolabelled antagonist, MRS2500, was used to quantify cell surface-binding sites of P2Y(1) receptors in Madin-Darby canine kidney (MDCK) epithelial cells, following exposure to agonists.

View Article and Find Full Text PDF

The P2Y(1) receptor is localized to the basolateral membrane of polarized Madin-Darby canine kidney (MDCK) cells. In the present study, we identified a 25-residue region within the C-terminal tail (C-tail) of the P2Y(1) receptor that directs basolateral sorting. Deletion of this sorting signal caused redirection of the receptor to the apical membrane, indicating that the region from the N-terminus to transmembrane domain 7 (TM7) contains an apical-sorting signal that is overridden by a dominant basolateral signal in the C-tail.

View Article and Find Full Text PDF

Diadenosine 5',5'''-P1,P2-diphosphate (Ap2A) is one of the adenylic dinucleotides stored in platelet granules. Along with proaggregant ADP, it is released upon platelet activation and is known to stimulate myocyte proliferation. We have previously demonstrated synthesis of Ap2A and of two isomers thereof, called P18 and P24, from their high pressure liquid chromatography retention time, by the ADP-ribosyl cyclase CD38 in mammalian cells.

View Article and Find Full Text PDF

The orphan receptor GPR80 (also called GPR99) was recently reported to be the P2Y(15) receptor activated by AMP and adenosine and coupled to increases in cyclic AMP accumulation and intracellular Ca(2+) mobilization (Inbe et al. J Biol Chem 2004; 279: 19790-9). However, the cell line (HEK293) used to carry out those studies endogenously expresses A(2A) and A(2B) adenosine receptors as well as multiple P2Y receptors, which complicates the analysis of a potential P2Y receptor.

View Article and Find Full Text PDF

P2Y2 and P2Y4 receptors, which have 52% sequence identity, are both expressed at the apical membrane of Madin-Darby canine kidney cells, but the locations of their apical targeting signals are distinctly different. The targeting signal of the P2Y2 receptor is located between the N terminus and 7TM, whereas that of the P2Y4 receptor is present in its C-terminal tail. To identify the apical targeting signal in the P2Y2 receptor, regions of the P2Y2 receptor were progressively substituted with the corresponding regions of the P2Y4 receptor lacking its targeting signal.

View Article and Find Full Text PDF

Eight human G protein-coupled P2Y receptors (P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11), P2Y(12), P2Y(13), and P2Y(14)) that respond to extracellular nucleotides have been molecularly identified and characterized. P2Y receptors are widely expressed in epithelial cells and play an important role in regulating epithelial cell function. Functional studies assessing the capacity of various nucleotides to promote increases in short-circuit current (I(sc)) or Ca(2+) mobilization have suggested that some subtypes of P2Y receptors are polarized with respect to their functional activity, although these results often have been contradictory.

View Article and Find Full Text PDF

UTP is a potent full agonist at both the human P2Y(4) (hP2Y(4)) and rat P2Y(4) (rP2Y(4)) receptor. In contrast, ATP is a potent full agonist at the rP2Y(4) receptor but is a similarly potent competitive antagonist at the hP2Y(4) receptor. To delineate the structural determinants of agonism versus antagonism in these species homologues, we expressed a series of human/rat P2Y(4) receptor chimeras in 1321N1 human astrocytoma cells and assessed the capacity of ATP and UTP to mobilize intracellular Ca(2+).

View Article and Find Full Text PDF