Publications by authors named "Ai Ying Zhang"

A high vascular patency was realized in the bulk or surface heparinized small-diameter in situ tissue-engineered vascular grafts (TEVGs) via a rabbit carotid artery replacement model in our previous studies. Those surface heparinized TEVGs could reduce the occurrence of aneurysms, but with a low level of the remodeled elastin, whereas those bulk heparinized TEVGs displayed a faster degradation and an increasing occurrence of aneurysms, but with a high level of the regenerated elastin. To combine the advantages of the bulk and surface graft heparinization to boost the remodeling of elastin and defer the occurrence of aneurysms, a coaxial electro-spinning technique was used to fabricate a kind of small-diameter core/shell fibrous structural in situ TEVGs with a faster degradable poly(lactic-co-glycolic acid) (PLGA) as a core layer and a relatively lower degradable poly(ε-caprolactone) (PCL) as a shell layer followed by the surface heparinization.

View Article and Find Full Text PDF

In our previous study, the pristine bilayer small-diametertissue engineered vascular grafts (pTEVGs) were electrospun from a heparinized polycaprolactone (PCL45k) as an inner layer and a non-heparinized PCL80k as an outer layer in the thickness of about 131 μm and 202 μm, respectively. However, the hydrophilic enhancement of inner layer stemmed from the heparinization accelerated the degradation of grafts leading to the early formation of arterial aneurysms in a period of 3 months, severely hindering the perennial observation of the neo-tissue regeneration, host cell infiltration and graft remodeling in those implanted pTEVGs. Herein to address this drawback, the thickness of the outer layers was increased with PCL80k to around 268 μm, while the inner layer remained unchangeable.

View Article and Find Full Text PDF

Developing novel porous adsorbents for efficient wastewater treatment is significant to the environment protection. Herein, three porous polycalix[]arenes ( = 4, 6, and 8) which had varying cavity sizes of the macrocycle (Azo-CX4P, Azo-CX6P, and Azo-CX8P) were prepared under mild conditions and tested for their potential application in water purification. Azo-CX8P with a larger cavity size of the macrocycle outperformed Azo-CX4P and Azo-CX6P in screening studies involving a range of organic micropollutants.

View Article and Find Full Text PDF

As thermoplastic polyurethane (TPU) elastomers possess good biocompatibility and mechanical properties similar to those of native vascular tissues, they were intended to be co-electrospun with poly(ε-caprolactone) (PCL) onto the outer surface of PCL electrospun small-diameter single-layer vascular grafts (SLVGs) in this study, combining with surface heparinization. In this work, a kind of structurally reinforced TPU+PCL/PCL small-diameter bilayer vascular graft (BLVG) was fabricated layer-by-layer electrospinning followed by the heparinization of PCL EDC/NHS chemistry. The resulting (TPU+PCL/PCL)-Hep BLVGs presented excellent mechanical strength and higher compliance, and sustainably released heparin exhibited enhanced anti-coagulation activity.

View Article and Find Full Text PDF

Increasingly growing problems in vascular access for long-term hemodialysis lead to a considerable demand for synthetic small diameter vascular prostheses, which usually suffer from some drawbacks and are associated to high failure rates. Incorporating the concept of in situ tissue engineering (TE) into synthetic small diameter blood vessels, for example, thermoplastic poly(ether urethane) (TPU) ones, could provide an alternative approach for vascular access that profits from the advantages of excellent mechanical properties of synthetic polymer materials (early cannulation) and unique biointegration regeneration of autologous neovascular tissues (long-term fistulae). In this study, a kind of heparinized small diameter (d = 2.

View Article and Find Full Text PDF

Recent studies have demonstrated the utility and superiority of DNA repair-related genes as novel biomarkers for cancer diagnosis, prognosis, and therapy. Here, we aimed to screen the potential survival-related DNA repair-related genes in thyroid cancer (TC). TCGA datasets were utilized to analyze the differentially expressed DNA repair-related genes between TC and nontumor tissues.

View Article and Find Full Text PDF

Hydrogel complex scaffolds (hydrogel scaffolds) are prepared by coating precursor solutions onto heparin-modified poly(ε-caprolactone) (PCLH) scaffolds followed by subsequent in situ gelation. Here, we show that hydrogel complexation can significantly strengthen the scaffold and slow its degradation. The hydrogel scaffold was implanted into the abdominal aorta of a rat model, and the aneurysm incidence rate of the hydrogel scaffolds sharply decreased compared with that of the hydrogel-free scaffolds.

View Article and Find Full Text PDF

Aiming to construct small diameter (ID <6 mm) off-the-shelf tissue-engineered vascular grafts, the end-group heparinizd poly(ε-caprolactone) (PCL) is synthesized by a three-step process and then electrospun into an inner layer of double-layer vascular scaffolds (DLVSs) showing a hierarchical double distribution of nano- and microfibers. Afterward, PCL without the end-group heparinization is electrospun into an outer layer. A steady release of grafted heparin and the existence of a glycocalyx structure give the grafts anticoagulation activity and the conjugation of heparin also improves hydrophilicity and accelerates degradation of the scaffolds.

View Article and Find Full Text PDF

Compared with polypseudorotaxanes (PPRs) formed from the self-assembly of β-cyclodextrins (β-CDs) with poly(propylene glycol) (PPG) and γ-CDs with poly( N-isopropylacrylamide) (PNIPAAm), the ratio of the inner cavity size of β-CD to the cross-sectional area of PNIPAAm appears not appropriate for their self-assembly. For a better understanding of the possibility of β-CDs including PNIPAAm and the crystal structure of PPRs formed therefrom, the PNIPAAm homo- and copolymers were subjected to self-assembly with β-CDs in an aqueous solution at room temperature. The results revealed that when β-CDs meet thicker PNIPAAms, the self-assembly takes place, not only giving rise to PPRs by a manner of main-chain inclusion complexation but also presenting the PPRs a matched over-fit crystal structure different from those of either a matched tight-fit β-CD-PPG PPR or a mismatched over-fit γ-CD-PNIPAAm PPR.

View Article and Find Full Text PDF

A syndiotactic-rich PHEMA oligomer ( rr = 74%, DP = 29, PDI = 1.19) was synthesized and subsequently subjected to self-assembly with a varying amount of γ-CDs in its aqueous solution to create mismatched overfit polypseudorotaxanes (PPRs). The inclusion complexation proceeded in an obvious mismatched manner between the cavity of γ-CDs and the cross-sectional area of an incoming PHEMA chain.

View Article and Find Full Text PDF

Both chiral OFm monosubstituted cyclo(l-Glu-l-Glu) and cyclo(d-Glu-d-Glu) display a robust gelation ability in a variety of organic solvents and water. In contrast to an individual enantiomer, their racemate can form rapidly recoverable thixotropic hydrogels with a remarkably shorter thixotropic recovery time. This unexpected thixotropic behavior is induced by the random arrangement of d- and l-enantiomers in the cell units, leading to the formation of "pseudoracemate", noncrystalline self-assemblies in the resulting 3D fibrous network.

View Article and Find Full Text PDF

Four l-Lysine(Lys)-l-glutamic acid(Glu) dipeptide derivatives (1-4) and their precursor-a single fluorenyl-9-methoxycarbonyl(Fmoc)-l-Lys(Fmoc)-OH amino acid (5) were demonstrated as gelators to gelate a variety of alcohols and aromatic solvents under the sonication conditions. Compared to the routine heating-cooling protocol, the ultrasound substantially brought down the minimum gelation concentrations (MGCs) of the resulting organogels. The Fourier transform infrared spectroscopy (FT-IR) and fluorescence studies revealed that the π-π stacking and hydrogen bonding act as major driving forces for the self-assembly of these lysine-based gelators into supramolecular fibrous three dimensional (3D) network, where the more the Fmoc protecting groups, the gelators are more responsive to ultrasound-stimulus and more conducive to an ordered molecular arrangement reinforcing the intermolecular forces.

View Article and Find Full Text PDF

Four cyclo(l-Lys-l-Glu) derivatives (3-6) were synthesized from the coupling reaction of protecting l-lysine with l-glutamic acid followed by the cyclization, deprotection, and protection reactions. They can efficiently gelate a wide variety of organic solvents or water. Interestingly, a spontaneous chemical reaction proceeded in the organogel obtained from 3 in acetone exhibiting not only visual color alteration but also increasing mechanical strength with the progress of time due to the formation of Schiff base.

View Article and Find Full Text PDF

Riparian zone, the ecological transition buffer between terrestrial and aquatic ecosystems (rivers, lakes, reservoirs, wetlands, and other specific water bodies) with unique eco-hydrological and biogeochemical processes, is the last ecological barrier to prevent ammonium, nitrate and other non-point nitrogen pollutants from adjacent water bodies. Based on a summary of current progress of related studies, we found there were two major mechanisms underpinning the nitrogen retention/removal by the riparian ecosystems: 1) the relative locations of nitrogen in the soil-plant-atmosphere continuum system could be altered by riparian vegetation; 2) nitrogen could also be denitrified and then removed permanently by microorganisms in riparian soil. However, which process is more critical for the nitrogen removal remains elusive.

View Article and Find Full Text PDF

Pentablock copolymers PMA-PPO-PEO-PPO-PMA synthesized via atom transfer radical polymerization (ATRP) were self-assembled with varying amounts of γ-CDs to prepare poly(pseudorotaxanes) (PPRs). When the concentration of γ-CDs was lower, the central PEO segment served as a shell of the micelles and was preferentially bent to pass through the γ-CD cavity to construct double-chain-stranded tight-fit PPRs characterized by a channel-like crystal structure. With an increase in the amount of γ-CDs added, they began to accommodate the poly(methyl acrylate) (PMA) segments dissociated from the core of the micelles.

View Article and Find Full Text PDF

A continuous electrospinning technique was applied to fabricate double layer tubular tissue engineering vascular graft (TEVG) scaffold. The luminal layer was made from poly(ɛ-caprolac-tone)(PCL) ultrafine fibers via common single axial electrospinning followed by the outer layer of core-shell structured nanofibers via coaxial electrospinning. For preparing the outer layernano-fibers, the PCL was electrospun into the shell and both bovine serum albumin (BSA) and tetrapeptide val-gal-pro-gly (VAPG) were encapsulated into the core.

View Article and Find Full Text PDF

A pentablock copolymer was prepared via the atom transfer radical polymerization of 2-hydroxyethyl methacrylate (HEMA) initiated by 2-bromoisobutyryl end-capped PPO-PEO-PPO as a macroinitiator in DMF. Attaching PHEMA blocks altered the self-assembly process of the pentablock copolymer with γ-CDs in aqueous solution. Before attaching the PHEMA, the macroinitiator was preferentially bent to pass through the inner cavity of γ-CDs to give rise to tight-fit double-chain stranded polypseudorotaxanes (PPRs).

View Article and Find Full Text PDF

A pH-sensitive nano antitumor drug delivery system was prepared by conjugating doxorubicin (DOX) to amphiphilic polyrotaxane (PR)-based block copolymers through a pH-sensitive cis-aconityl moiety. The resulting polymer-drug conjugates were able to self-assemble into polymeric micelles in an aqueous solution with diameters varying from 297 nm to 178 nm after the conjugation as evidenced by DLS measurements. The pH-sensitive cis-aconityl linkage provided a controlled and sustained release of DOX over a period of more than 5 days in an acidic environment mimicking the tumor microenvironment, and a negligible amount of release in an environment with physiological pH.

View Article and Find Full Text PDF

Poly(ε-caprolactone) (PCL) was conjugated with heparin and fabricated into nonwoven tubular scaffold by electrospinning. The dynamic contact angle analysis revealed the hydrophilicity improvement due to heparin concentrating on the conjugate surface. The microbicinchoninic acid and quartz crystal microbalance measurements implied that the conjugate can significantly reduce the absorption of plasma protein, such as albumin and fibrinogen, indicative of the good blood biocompatibility.

View Article and Find Full Text PDF

A polypseudorotaxane (PPR) comprising γ-cyclodextrin (γ-CD) as host molecules and poly(N-isopropylacrylamide) (PNIPAM) as a guest polymer is prepared via self-assembly in aqueous solution. Due to the bulky pendant isopropylamide group, PNIPAM exhibits size-selectivity toward self-assembly with α-, β-, and γ-CDs. It can fit into the cavity of γ-CD to give rise to a PPR, but cannot pass through α-CD and β-CD under the same conditions.

View Article and Find Full Text PDF

A series of biodegradable polyurethanes (PUs) were synthesized using poly(ε-caprolactone) diol (PCL) to react with L-lysine ethyl ester diisocyanate (LDI) chain extend with L-lysine ethyl ester (LEE) in solution of DMF. The structure was characterized by gel permeation chromatography, ¹H-NMR, Fourier transform infrared, and DSC analyses. Mechanical property testing showed that their tensile strength rose with increasing the hard segment content with a maximum tensile strength of 34.

View Article and Find Full Text PDF

A series of polyrotaxane-based triblock copolymers comprising beta-cyclodextrins (beta-CDs) threaded onto a distal 2-bromopropionyl end-capped Pluronic F127 as a central block and poly(N-isopropylacrylamide) outer blocks as end-stoppers were prepared via ATRP of N-isopropylacrylamide in aqueous solution. The structure of the resulting copolymers was characterized in detail by (1)H NMR, (13)C NMR, GPC, and WXRD techniques. Unlike those CD-based polyrotaxanes exhibiting the characteristic tunnel-type crystal structure, these copolymers precipitated from DMF with anhydrous ether preserve a dispersed-state structure in which the beta-CDs are loosely distributed along the Pluronic F127 chain, while they present an aggregated structure in which the beta-CDs are densely stacked one by one along the polymer backbone, holding the typical tunnel-like crystal structure after incubation in water and freeze-drying.

View Article and Find Full Text PDF

Biodegradable triblock copolymers of epsilon-caprolactone and L-lactide with varying compositions and molecular weights have been synthesized. They were then used to fabricate compliant small-diameter tissue engineered vascular scaffolds by using an electrospinning technique. The in vitro and in vivo degradation of the ultrafine fabrics was monitored to be faster than their counterpart cast films.

View Article and Find Full Text PDF

In the present study, we describe the synthesis, characterization and self-assembly of a novel amphiphilic linoleic acid (LA)-modified polypeptide copolymer and its drug release behavior in vitro as well. Initially, an amphiphilic ABA triblock copolymer comprising polytetrahydrofuran (PTHF) as a central hydrophobic block and poly(L-lysine)s as outer hydrophilic blocks was prepared via the ring-opening polymerization of epsilon-benzyloxycarbonyl-L-lysine N-carboxyanhydride with a distal amine-terminated PTHF as a macroinitiator, followed by the removal of the protecting group. The resulting triblock copolymer was then reacted with linoleic acid in the presence of N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCHCl)/N-hydroxysuccinimide (HOSu) to give rise to a target LA-modified polypeptide copolymer.

View Article and Find Full Text PDF