Droplet manipulation technologies with surface acoustic waves attract significant attention for applications in fluid handling and bioanalysis. However, existing technologies face challenges in automation, precision, and functional integration, limiting broader applications. In this work, a highly integrated droplet-sensing acoustofluidic tweezer is developed, incorporating orthogonally arranged slanted finger interdigital transducers and a custom-designed control and detection circuit system.
View Article and Find Full Text PDFDroplet microfluidic systems have emerged as indispensable and advanced tools in contemporary biological science. A prominent example is the droplet digital polymerase chain reaction (ddPCR), which plays a pivotal role in next-generation sequencing and the detection of rare nucleic acids or mutations. However, existing optical detection configurations are bulky, intricate, and costly, and require meticulous optical alignment to optimize fluorescence sensing.
View Article and Find Full Text PDFBackground: Isopentenyltransferases (IPT) serve as crucial rate-limiting enzyme in cytokinin synthesis, playing a vital role in plant growth, development, and resistance to abiotic stress.
Results: Compared to the wild type, transgenic creeping bentgrass exhibited a slower growth rate, heightened drought tolerance, and improved shade tolerance attributed to delayed leaf senescence. Additionally, transgenic plants showed significant increases in antioxidant enzyme levels, chlorophyll content, and soluble sugars.
There has been an increasing call to model multivariate time series data with measurement error. The combination of latent factors with a vector autoregressive (VAR) model leads to the dynamic factor model (DFM), in which dynamic relations are derived within factor series, among factors and observed time series, or both. However, a few limitations exist in the current DFM representatives and estimation: (1) the dynamic component contains either directed or undirected contemporaneous relations, but not both, (2) selecting the optimal model in exploratory DFM is a challenge, (3) the consequences of structural misspecifications from model selection is barely studied.
View Article and Find Full Text PDFThe necessity for rapid and accurate bacterial growth monitoring is imperative across various domains, including healthcare and environmental safety. We introduce the self-synchronized droplet-amplified electrical screening cytometry (SYNC) system, a novel meld of droplet microfluidics and electrochemical amplification tailored for precise bacterial growth kinetic monitoring. SYNC encapsulates single bacteria in picolitre droplets, enabling real-time, fluorescence-free electrochemical monitoring.
View Article and Find Full Text PDFQuantitative nucleic acid amplification tests are of great importance for diagnostics, but current approaches require complex and costly optical setups that limit their nonlaboratory applications. Herein we describe the implementation of a microfluidics platform that can perform binary DNA-amplification-activated droplet sorting. The digital sort-enabled counting (DISCO) platform enables label-free absolute quantification of the nucleic acid.
View Article and Find Full Text PDFBiosens Bioelectron
June 2024
Droplet-based single-cell analysis is a very powerful tool for studying phenotypic and genomic heterogeneity at single-cell resolution for a variety of biological problems. In conventional two-phase droplet microfluidics, due to the mismatch in optical properties between oil and aqueous phases, light scattering mainly happens at the oil/water interface that disables light-scattering-based cell analysis confined in microdroplets. Detection and analysis of cells in microdroplets thus mostly rely on the fluorescence labeling of cell samples, which may suffer from complex operation, cytotoxicity, and low fluorescence stability.
View Article and Find Full Text PDFThe immune checkpoint ligand PD-L1 has emerged as a molecular target for skin cancer therapy and might also hold promise for preventive intervention targeting solar UV light-induced skin damage. In this study, we have explored the role of PD-L1 in acute keratinocytic photodamage testing the effects of small-molecule pharmacological inhibition. Epidermal PD-L1 upregulation in response to chronic photodamage was established using immunohistochemical and proteomic analyses of a human skin cohort, consistent with earlier observations that PD-L1 is upregulated in cutaneous squamous cell carcinoma.
View Article and Find Full Text PDFRapid and accurate identification of bacteria is of great importance to public health in various fields, including medical diagnostics, food safety, and environmental monitoring. However, most existing bacterial detection methods have very narrow detectable concentration ranges and limited detection information, which easily leads to wrong diagnosis and treatment. This work presents a novel high-throughput microfluidic electrical impedance-based multidimensional single-bacterium profiling system for ultrawide concentration range detection and accurate differentiation of viability and Gram types of bacteria.
View Article and Find Full Text PDFCymbidium ensifolium is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of C. ensifolium, this research conducted transcriptome and metabolome analyses on four different colored sepals of C.
View Article and Find Full Text PDFAntimicrobial resistance has become a serious threat to the global public health. Accurate and rapid antimicrobial susceptibility testing (AST) allows evidence-based prescribing of antibiotics to improve patient care and clinical outcomes. Current culture-based AST assays are inherently limited by the doubling time of bacterial reproduction, which require at least 24 h to have a decisive result.
View Article and Find Full Text PDFCo-encapsulation of bead carriers and biological cells in microfluidics has become a powerful technique for various biological assays in single-cell genomics and drug screening because of its distinct capability of single-cell confinement. However, current co-encapsulation approaches exist a trade-off between cell/bead pairing rate and probability of multiple cells in individual droplets, significantly limiting the effective throughput of single-paired cell-bead droplets production. Deformability-assisted dUal-Particle encapsuLation via Electrically acTivated Sorting (DUPLETS) system is reported to overcome this problem.
View Article and Find Full Text PDFBackground: Alfalfa (Medicago sativa L.) as an important legume plant can quickly produce adventitious roots (ARs) to form new plants by cutting. But the regulatory mechanism of AR formation in alfalfa remains unclear.
View Article and Find Full Text PDFSingle-cell encapsulation in droplets has become a powerful tool in immunotherapy, medicine discovery, and single-cell analysis, thanks to its capability for cell confinement in picoliter volumes. However, the purity and throughput of single-cell droplets are limited by random encapsulation process, which resuts in a majority of empty and multi-cells droplets. Herein we introduce the first label-free selectable cell quantity encapsulation in droplets sorting system to overcome this problem.
View Article and Find Full Text PDFObjective: Symptom counts as the basis for Post-Traumatic Stress Disorder (PTSD) diagnoses in the DSM presume each symptom is equally reflective of underlying disorder severity. However, the "equal weight" assumption fails to fit PTSD symptom data when tested. The present study developed an enhanced PTSD diagnosis based on (a) a conventional PTSD diagnosis from a clinical interview and (b) an empirical classification of full PTSD that reflected the relative clinical weights of each symptom.
View Article and Find Full Text PDFMicrofluidics provides a powerful platform for biological analysis by harnessing the ability to precisely manipulate fluids and microparticles with integrated microsensors. Here, we introduce an imaging and impedance cell analyzer (IM2Cell), which implements single cell level impedance analysis and hydrodynamic mechanical phenotyping simultaneously. For the first time, IM2Cell demonstrates the capability of multi-stress level mechanical phenotyping.
View Article and Find Full Text PDFPower analysis informs a priori planning of behavioral and medical research, including for randomized clinical trials that are nomothetic (i.e., studies designed to infer results to the general population based on interindividual variabilities).
View Article and Find Full Text PDFObjective: Treatment efficacy for co-occurring posttraumatic stress disorder (PTSD) and substance use disorders is well established, yet direct evidence for comparative effectiveness across treatments is lacking. The present study compared the effectiveness of several behavioral and pharmacological therapies for adults with co-occurring PTSD and alcohol or other drug use disorders.
Methods: A systematic search of PsycINFO, MEDLINE, and ClinicalTrials.
Microlens arrays (MLAs) are acquiring a key role in the micro-optical system, which have been widely applied in the fields of imaging processing, light extraction, biochemical sensing, and display technology. Compared with solid MLAs, liquid MLAs have received extensive attention due to their natural smooth interface and adjustability. However, manufacturing tunable liquid MLAs with ideal structures is still a key challenge for current technologies.
View Article and Find Full Text PDFCellular mechanical properties are a class of intrinsic biophysical markers for cell state and health. Microfluidic mechanical phenotyping methods have emerged as promising tools to overcome the challenges of low throughput and high demand for manual skills in conventional approaches. In this work, two types of microfluidic cellular mechanical phenotyping methods, contactless hydro-stretching deformability cytometry (lh-DC) and contact constriction deformability cytometry (cc-DC) are comprehensively studied and compared.
View Article and Find Full Text PDFCell wash is an essential cell sample preparation procedure to eliminate or minimize interfering substances for various subsequent cell analyses. The commonly used cell wash method is centrifugation which separates cells from other biomolecules in a solution with manual pipetting and has many drawbacks such as being labor-intensive and time-consuming with substantial cell loss and cell clumping. To overcome these issues, a centrifuge-free and automatic cell wash platform for cell purity generation, termed Puriogen, has been developed in this work.
View Article and Find Full Text PDFTo improve our understanding of the origin and evolution of mycoheterotrophic plants, we here present the chromosome-scale genome assemblies of two sibling orchid species: partially mycoheterotrophic Platanthera zijinensis and holomycoheterotrophic Platanthera guangdongensis. Comparative analysis shows that mycoheterotrophy is associated with increased substitution rates and gene loss, and the deletion of most photoreceptor genes and auxin transporter genes might be linked to the unique phenotypes of fully mycoheterotrophic orchids. Conversely, trehalase genes that catalyse the conversion of trehalose into glucose have expanded in most sequenced orchids, in line with the fact that the germination of orchid non-endosperm seeds needs carbohydrates from fungi during the protocorm stage.
View Article and Find Full Text PDF