Publications by authors named "Ai Qin Thang"

A stable anode-free lithium metal battery (AFLMB) is accomplished by the adoption of a facile fabricated amorphous antimony (Sb)-coated separator (SbSC). The large specific surface area of the separator elevates lithium (Li)-Sb alloy kinetic, improving Li wetting ability on pristine copper current collector (Cu). When tested with LiNi Mn Co O (NMC811) as cathode, the full cell with SbSC demonstrates low nucleation overpotential with compact, dendrite-free and homogeneous Li plating, and exhibits a notable lithium inventory retention rate (LIRR) of 99.

View Article and Find Full Text PDF

A partially neutralized polyacrylic acid (Pn-PAA) is used for coating sub-micron-sized α-alumina on a conventional microporous polyolefin separator, fabricating a ceramic-coated separator (CCS). Pn-PAA acts as a dispersant and binder by adsorbing itself on alpha(α)-alumina surfaces under acidic condition through the columbic interaction, providing a repulsive force to disperse fine alumina in aqueous suspension, and binds alumina strongly on plasma-treated separator through hydrogen bonding. This CCS shows favorable wettability in carbonate-based liquid electrolyte and ionic conduction due to the high hydrophilicity of Pn-PAA and alumina.

View Article and Find Full Text PDF

The high cost and scarcity of lithium resources have prompted researchers to seek alternatives to lithium-ion batteries. Among emerging "Beyond Lithium" batteries, rechargeable aluminum-ion batteries (AIBs) are yet another attractive electrochemical storage device due to their high specific capacity and the abundance of aluminum. Although the current electrochemical performance of nonaqueous AIBs is better than aqueous AIBs (AAIBs), AAIBs have recently gained attention due to their low cost and enhanced safety.

View Article and Find Full Text PDF