Publications by authors named "Ai Minomo"

Background: 4Z,15Z-bilirubin-IXα (BR), an endogenous toxic compound that is sparingly soluble in water, binds human serum albumin (HSA) with high affinity in a flexible manner. Our previous findings suggest that both Lys195 and Lys199 in subdomain IIA are important for the high-affinity binding of BR, and especially Lys199 in stand-alone domain II plays a prominent role in the renal elimination of BR. Our hypothesis is that HSA-domain II with high BR binding would be a useful therapeutic agent to treat hyperbilirubinemia in patients with impaired liver function.

View Article and Find Full Text PDF

Macromolecules have been developed as carriers of low-molecular-weight drugs in drug delivery systems (DDS) to improve their pharmacokinetic profile or to promote their uptake in tumor tissue via enhanced permeability and retention (EPR) effects. In the present study, recombinant human serum albumin dimer (AL-Dimer), which was designed by linking two human serum albumin (HSA) molecules with the amino acid linker (GGGGS)(2), significantly accumulated in tumor tissue even more than HSA Monomer (AL-Monomer) and appearing to have good retention in circulating blood in murine colon 26 (C26) tumor-bearing mice. Moreover, we developed S-nitrosated AL-Dimer (SNO-AL-Dimer) as a novel DDS compound containing AL-Dimer as a carrier, and nitric oxide (NO) as (i) an anticancer therapeutic drug/cell death inducer and (ii) an enhancer of the EPR effect.

View Article and Find Full Text PDF

4Z,15Z-bilirubin-IXα (4Z,15Z-BR), an endogenous compound that is sparingly soluble in water, binds human serum albumin (HSA) with high affinity in a flexible manner. A phage library displaying recombinant HSA domain II was constructed, after three rounds of panning against immobilized 4Z,15Z-BR, and eight clones with high affinity for the pigment were found to contain conserved basic residues, such as lysine or arginine, at positions 195 and 199. The wild type and two mutants, K195A and K199A, of whole HSA as well as stand-alone domain II were expressed in Pichia pastoris for ligand-binding studies.

View Article and Find Full Text PDF

Fatty acids are endogenous ligands of human serum albumin (HSA) that induce conformational changes and participate in allosteric ligand binding to HSA. In a previous study, we showed that, when myristate (MYR) is present, the binding of [(14) C]ketoprofen (KP) to subdomain IA of HSA was increased, indicating that, when MYR binds to HSA, a new binding site in formed in that region. Meanwhile, an N-B transition has been reported to increase the binding of ligands at alkaline pH when the status of albumin is the B-conformer.

View Article and Find Full Text PDF