The endolymphatic sac is a small sac-shaped organ at the end of the membranous labyrinth of the inner ear. The endolymphatic sac absorbs the endolymph, in which the ion balance is crucial for inner ear homeostasis. Of the three sections of the endolymphatic sac, the intermediate portion is the center of endolymph absorption, particularly sodium transport, and is thought to be regulated by aldosterone.
View Article and Find Full Text PDFPhospholipids are distributed asymmetrically in the plasma membrane (PM) of mammalian cells. Phosphatidylinositol (PI) and its phosphorylated forms are primarily located in the inner leaflet of the PM. Among them, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P) is a well-known substrate for phospholipase C (PLC) or phosphoinositide-3 kinase, and is also a regulator for the actin cytoskeleton or ion channels.
View Article and Find Full Text PDFObjectives: Tricellulin is a tight junction (TJ)-forming protein that participates in the sealing function of tricellular TJs. Tricellulin-knockout (Tric-/-) mice show progressive hearing loss with degeneration of hair cells in the cochlea without physiological or physical disorders. In the present study, we investigated the tricellulin expression and its deletion effects in the endolymphatic sac (ES) using Tric-/- mice.
View Article and Find Full Text PDFSmall RNA (sRNA)-mediated gene silencing phenomena, exemplified by RNA interference (RNAi), require a unique class of proteins called Argonautes (AGOs). An AGO protein typically forms a protein-sRNA complex that contributes to gene silencing using the loaded sRNA as a specificity determinant. Here, we show that MoAGO2, one of the three AGO genes in the fungus Pyricularia oryzae (Magnaporthe oryzae) interferes with RNAi.
View Article and Find Full Text PDFIon transport and its regulation in the endolymphatic sac (ES) are reviewed on the basis of recent lines of evidence. The morphological and physiological findings demonstrate that epithelial cells in the intermediate portion of the ES are more functional in ion transport than those in the other portions. Several ion channels, ion transporters, ion exchangers, and so on have been reported to be present in epithelial cells of ES intermediate portion.
View Article and Find Full Text PDFObjective: The purpose of the study was to investigate the difference in the responses of endolymphatic hydrostatic pressure to isoproterenol, β-adrenergic receptor agonist, between pars superior and pars inferior.
Methods: The hydrostatic pressure of endolymph and perilymph and endolymphatic potential in the ampulla and the cochlea during the intravenous administration of isoproterenol were recorded using a servo-null system in guinea pigs.
Results: The hydrostatic pressure of endolymph and perilymph in the ampulla and cochlea was similar in magnitude.
Tricellulin (also known as MARVELD2) is considered as a central component of tricellular tight junctions and is distributed among various epithelial tissues. Although mutations in the gene encoding tricellulin are known to cause deafness in humans (DFNB49) and mice, the influence of its systemic deletion in vivo remains unknown. When we generated tricellulin-knockout mice (Tric(-/-)), we found an early-onset rapidly progressive hearing loss associated with the degeneration of hair cells (HCs); however, their body size and overall appearance were normal.
View Article and Find Full Text PDFObjective: Na(+) and Cl(-) are dominant ions in the endolymphatic fluid in the endolymphatic sac and are important for volume regulation in the endolymphatic sac. An epithelial sodium channel (ENaC) and other Na(+) transporters have been identified in the endolymphatic sac epithelia, and they are involved in the regulation of endolymph. Although the presence of Cl(-) channels in the endolymphatic sac epithelia has been speculated, no Cl(-) channels have been identified.
View Article and Find Full Text PDFIntravenous application of catecholamines produces a depression in the endolymphatic sac direct current potential (ESP) and increases endolymphatic pressure via the β-adrenergic receptor (AR) in guinea pigs, suggesting that catecholamines play a role in the endolymphatic system. However, the localization of ARs in the endolymphatic sac (ES) is still undetermined. The presence of ARs in the rat ES was investigated by reverse transcriptase-polymerase chain reaction using laser capture microdissection (LCM) and immunohistochemical analysis.
View Article and Find Full Text PDFA homeostasis of the electrochemical properties and volume of the endolymph in the inner ear is essential for hearing and equilibrium sensing and is maintained by ion-transport across an epithelial tissue, the endolymphatic sac. One of the key proteins in the maintenance is Na(+), K(+)-ATPase. Although we previously found that the Na(+), K(+)-ATPase in the sac plays a pivotal role in the control of the endolymphatic volume, the mechanism remains unclear.
View Article and Find Full Text PDFObjective: Claudins are a family of membrane proteins which localize to tight junctions (TJs). Recent studies have shown that claudins can form pores for ions in the TJs and regulate the permeability of epithelial paracellular ion transport. The endolymphatic sac (ES) is a part of the inner ear, absorbing the endolymphatic fluid.
View Article and Find Full Text PDFLaser-capture microdissection (LCM) is an excellent tool to selectively obtain target tissue or cells. The endolymphatic sac (ES) is part of the inner ear, and a large part of the ES is located in the temporal bone. The rat ES is conventionally harvested using stereomicroscopy.
View Article and Find Full Text PDFObjective: The normal value of nasal resistance in adults has been reported (0.25 Pa/cm³/s), but that in children has not. In this study, we measured nasal resistance in Japanese school children by employing rhinomanometry.
View Article and Find Full Text PDFThe endolymphatic sac (ES) is a part of the membranous labyrinth. ES is believed to perform endolymph absorption, which is dependent on several ion transporters, including Na(+)/K(+)/2Cl(-) cotransporter type 2 (NKCC-2) and Na(+)/K(+)-ATPase. NKCC-2 is typically recognized as a kidney-specific ion transporter expressed in the apical membrane of the absorptive epithelium.
View Article and Find Full Text PDFConclusions: 11beta-Hydroxysteroid dehydrogenase type 2 (11bHSD-2) enables aldosterone to bind to mineralocorticoid receptors (MRs) selectively by converting cortisol (corticosterone) into inactive metabolites. Its expression in the endolymphatic sac (ES) suggests that aldosterone may selectively act on the ES through its binding to MRs by the action of 11betaHSD-2, and supports the notion that ES is an aldosterone target organ. We propose that 11betaHSD-2 is a dominant isoform of 11betaHSDs in the ES, and the ES (especially the intermediate portion of the ES) may be the main aldosterone target in the inner ear.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2008
The endolymphatic sac (ES) is an organ that is located in the temporal bone. Its anatomical location makes ES tissue collection without any contamination very difficult, and sometimes accurate molecular analyses of the ES are prevented due to this matter. In the present study, a new selective ES epithelial tissue collection method was attempted using laser capture microdissection to obtain pure ES RNA without any contamination.
View Article and Find Full Text PDF