The key reactive intermediate of borohydride reduction catalyzed by Schiff base-cobalt complexes is proposed to be the dichloromethylcobalt hydride with a sodium cation, based on experimental and theoretical studies. It was revealed that chloroform is not the solvent but the reactant that activates the cobalt catalyst. The substrate carbonyl compounds are fixed and activated by the alkali cation, which is captured by the oxygen atoms of the planar ligand and the chlorine atom of the axial ligand, and attacked by the hydride on the cobalt atom via a six-membered-like transition state to afford the corresponding alcohol.
View Article and Find Full Text PDF[reaction: see text] In the presence of the optically active ketoiminatocobalt(II) complexes, the enantioselective borohydride reduction of benzophenones was successfully completed. The fluorine atom on the ortho position of the benzophenone and aryl ketones proved effective for obtaining high enantioselectivities. The combined use of modified lithium borohydride afforded the corresponding benzhydrols and arylcarbinols in high yield and high enantioselectivity (88-96% ee).
View Article and Find Full Text PDF