Recent advances in neural network-based computing have enabled human-like information processing in areas such as image classification and voice recognition. However, many neural networks run on conventional computers that operate at GHz clock frequency and consume considerable power compared to biological neural networks, such as human brains, which work with a much slower spiking rate. Although many electronic devices aiming to emulate the energy efficiency of biological neural networks have been explored, achieving long timescales while maintaining scalability remains an important challenge.
View Article and Find Full Text PDFElectrostatic carrier accumulation on an insulating (100) surface of SrTiO3 by fabricating a field effect transistor with Parylene-C (6 nm)/HfO2 (20 nm) bilayer gate insulator has revealed a mystifying phenomenon: sheet carrier density is about 10 times as large as ( is the sheet capacitance of the gate insulator, VG is the gate voltage, and e is the elementary charge). The channel is so clean to exhibit small subthreshod swing of 170 mV/decade and large mobility of 11 cm(2)/Vs for of 1 × 10(14) cm(-2) at room temperature. Since does not depend on either VG nor time duration, beyond is solely ascribed to negative charge compressibility of the carriers, which was in general considered as due to exchange interactions among electrons in the small limit.
View Article and Find Full Text PDF