A human-specific splicing variant of vascular endothelial growth factor (VEGF) receptor 1 (Flt1) was discovered, producing a soluble receptor (designated sFlt1-14) that is qualitatively different from the previously described soluble receptor (sFlt1) and functioning as a potent VEGF inhibitor. sFlt1-14 is generated in a cell type-specific fashion, primarily in nonendothelial cells. Notably, in vascular smooth muscle cells, all Flt1 messenger RNA is converted to sFlt1-14, whereas endothelial cells of the same human vessel express sFlt1.
View Article and Find Full Text PDFA key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function.
View Article and Find Full Text PDFAdult neovascularization relies on the recruitment of circulating cells, but their angiogenic roles and recruitment mechanisms are unclear. We show that the endothelial growth factor VEGF is sufficient for organ homing of circulating mononuclear myeloid cells and is required for their perivascular positioning and retention. Recruited bone marrow-derived circulating cells (RBCCs) summoned by VEGF serve a function distinct from endothelial progenitor cells.
View Article and Find Full Text PDFOxygen is the ultimate source of oxidizing power for disulfide bond formation, suggesting that under limiting oxygen proper protein folding might be compromised. We show that secretion of vascular endothelial growth factor (VEGF), a protein with multiple disulfide bonds, was indeed impeded under hypoxia and was partially restored by artificial increase of oxidizing equivalents with diamide. Physiologically, the oxireductase endoplasmic reticulum oxidoreductin-1 (Ero1)-L alpha, but not other proteins in the relay of disulfide formation, was strongly upregulated by hypoxia and independently by hypoglycemia, two known accompaniments of tumors.
View Article and Find Full Text PDFNonlaminar flow is a major predisposing factor to atherosclerosis. Yet little is known regarding hemodynamic gene regulation in disease-prone areas of the vascular tree in vivo. We have determined spatial patterns of expression of endothelial cell receptors in the arterial tree and of reporter gene constructs in transgenic animals.
View Article and Find Full Text PDFTo gain insight into neovascularization of adult organs and to uncover inherent obstacles in vascular endothelial growth factor (VEGF)-based therapeutic angiogenesis, a transgenic system for conditional switching of VEGF expression was devised. The system allows for a reversible induction of VEGF specifically in the heart muscle or liver at any selected schedule, thereby circumventing embryonic lethality due to developmental misexpression of VEGF. Using this system, we demonstrate a progressive, unlimited ramification of the existing vasculature.
View Article and Find Full Text PDF