Publications by authors named "Ahsan Habib Khandoker"

A large number of people with obstructive sleep apnea (OSA) also suffer from major depressive disorder (MDD), leading to underdiagnosis due to overlapping symptoms. Polysomnography has been considered to identify MDD. However, limited access to sleep clinics makes this challenging.

View Article and Find Full Text PDF

Previous literature has highlighted the importance of maternal behavior during the prenatal period for the upbringing of healthy adults. During pregnancy, fetal health assessments are mainly carried out non-invasively by monitoring fetal growth and heart rate (HR) or RR interval (RRI). Despite this, research entailing prediction of fHRs from mHRs is scarce mainly due to the difficulty in non-invasive measurements of fetal electrocardiogram (fECG).

View Article and Find Full Text PDF

With the popularization of low-cost mobile and wearable sensors, several studies have used them to track and analyze mental well-being, productivity, and behavioral patterns. However, there is still a lack of open datasets collected in real-world contexts with affective and cognitive state labels such as emotion, stress, and attention; the lack of such datasets limits research advances in affective computing and human-computer interaction. This study presents K-EmoPhone, a real-world multimodal dataset collected from 77 students over seven days.

View Article and Find Full Text PDF

Background: Despite evidence suggesting that excess weight is linked to gait alterations and foot disorders, its effect on peak plantar pressure (PPP) variability and complexity during walking remains poorly understood.

Research Question: This study aimed to examine the influence of overweight (BMI ≥ 25) on the dynamic PPP distribution during gait using traditional and nonlinear dynamic measures in young college students.

Methods: Fifty-two overweight (BMI >25, average 29.

View Article and Find Full Text PDF

Gait dysfunction or impairment is considered one of the most common and devastating physiological consequences of stroke, and achieving optimal gait is a key goal for stroke victims with gait disability along with their clinical teams. Many researchers have explored post stroke gait, including assessment tools and techniques, key gait parameters and significance on functional recovery, as well as data mining, modeling and analyses methods. This study aimed to review and summarize research efforts applicable to quantification and analyses of post-stroke gait with focus on recent technology-driven gait characterization and analysis approaches, including the integration of smart low cost wearables and Artificial Intelligence (AI), as well as feasibility and potential value in clinical settings.

View Article and Find Full Text PDF

Recognizing emotions during social interactions has many potential applications with the popularization of low-cost mobile sensors, but a challenge remains with the lack of naturalistic affective interaction data. Most existing emotion datasets do not support studying idiosyncratic emotions arising in the wild as they were collected in constrained environments. Therefore, studying emotions in the context of social interactions requires a novel dataset, and K-EmoCon is such a multimodal dataset with comprehensive annotations of continuous emotions during naturalistic conversations.

View Article and Find Full Text PDF