Despite the widespread use of encryption techniques to provide confidentiality over Internet communications, mobile device users are still susceptible to privacy and security risks. In this paper, a novel Deep Neural Network (DNN) based on a user activity detection framework is proposed to identify fine-grained user activities performed on mobile applications (known as in-app activities) from a sniffed encrypted Internet traffic stream. One of the challenges is that there are countless applications, and it is practically impossible to collect and train a DNN model using all possible data from them.
View Article and Find Full Text PDF