We provide evidence that a member of the human Schlafen (SLFN) family of proteins, SLFN5, is overexpressed in human pancreatic ductal adenocarcinoma (PDAC). Targeted deletion of SLFN5 results in decreased PDAC cell proliferation and suppresses PDAC tumorigenesis in in vivo PDAC models. Importantly, high expression levels of SLFN5 correlate with worse outcomes in PDAC patients, implicating SLFN5 in the pathophysiology of PDAC that leads to poor outcomes.
View Article and Find Full Text PDFAberrant activation of mTOR signaling in acute myeloid leukemia (AML) results in a survival advantage that promotes the malignant phenotype. To improve our understanding of factors that contribute to mammalian target of rapamycin (mTOR) signaling activation and identify novel therapeutic targets, we searched for unique interactors of mTOR complexes through proteomics analyses. We identify cyclin dependent kinase 9 (CDK9) as a novel binding partner of the mTOR complex scaffold protein, mLST8.
View Article and Find Full Text PDFIt is well established that activation of the transcription factor signal transducer and activator of transcription 1 (STAT1) is required for the interferon-γ (IFN-γ)-mediated antiviral response. Here, we found that IFN-γ receptor stimulation also activated Unc-51-like kinase 1 (ULK1), an initiator of Beclin-1-mediated autophagy. Furthermore, the interaction between ULK1 and the mitogen-activated protein kinase kinase kinase MLK3 (mixed lineage kinase 3) was necessary for MLK3 phosphorylation and downstream activation of the kinase ERK5.
View Article and Find Full Text PDFAlthough members of the Slfn family have been implicated in the regulation of type I interferon (IFN) responses, the mechanisms by which they mediate their effects remain unknown. In the present study, we provide evidence that targeted disruption of the gene leads to increased transcription of IFN-stimulated genes (ISGs) and enhanced type I IFN-mediated antiviral responses. We demonstrate that Slfn2 interacts with protein phosphatase 6 regulatory subunit 1 (PPP6R1), leading to reduced type I IFN-induced activation of nuclear factor kappa B (NF-κB) signaling, resulting in reduced expression of ISGs.
View Article and Find Full Text PDFPrimary myelofibrosis (PMF) is a clonal hematologic malignancy characterized by BM fibrosis, extramedullary hematopoiesis, circulating CD34+ cells, splenomegaly, and a propensity to evolve to acute myeloid leukemia. Moreover, the spleen and BM of patients harbor atypical, clustered megakaryocytes, which contribute to the disease by secreting profibrotic cytokines. Here, we have revealed that megakaryocytes in PMF show impaired maturation that is associated with reduced GATA1 protein.
View Article and Find Full Text PDFUnlabelled: Glioblastoma multiforme remains the deadliest malignant brain tumor, with glioma stem cells (GSC) contributing to treatment resistance and tumor recurrence. We have identified MAPK-interacting kinases (MNK) as potential targets for the GSC population in glioblastoma multiforme. Isoform-level subtyping using The Cancer Genome Atlas revealed that both MNK genes (MKNK1 and MKNK2) are upregulated in mesenchymal glioblastoma multiforme as compared with other subtypes.
View Article and Find Full Text PDFTumor spheroids are becoming an important tool for the investigation of cancer stem cell (CSC) function in tumors; thus, low-cost and high-throughput methods for drug screening of tumor spheroids are needed. Using neurospheres as non-adherent three-dimensional (3-D) cultures, we developed a simple, low-cost acridine orange (AO)-based method that allows for rapid analysis of live neurospheres by fluorescence microscopy in a 96-well format. This assay measures the cross-section area of a spheroid, which corresponds to cell viability.
View Article and Find Full Text PDFWe provide evidence for a unique pathway engaged by the type II IFN receptor, involving mTORC2/AKT-mediated downstream regulation of mTORC1 and effectors. These events are required for formation of the eukaryotic translation initiation factor 4F complex (eIF4F) and initiation of mRNA translation of type II interferon-stimulated genes. Our studies establish that Rictor is essential for the generation of type II IFN-dependent antiviral and antiproliferative responses and that it controls the generation of type II IFN-suppressive effects on normal and malignant hematopoiesis.
View Article and Find Full Text PDFUnlabelled: Human pancreatic ductal adenocarcinoma (PDAC) tumors are associated with dysregulation of mRNA translation. In this report, it is demonstrated that PDAC cells grown in collagen exhibit increased activation of the MAPK-interacting protein kinases (MNK) that mediate eIF4E phosphorylation. Pharmacologic and genetic targeting of MNKs reverse epithelial-mesenchymal transition (EMT), decrease cell migration, and reduce protein expression of the EMT-regulator ZEB1 without affecting ZEB1 mRNA levels.
View Article and Find Full Text PDFWe investigated the efficacy of targeting the PIM kinase pathway in Philadelphia chromosome-positive (Ph+) leukemias. We provide evidence that inhibition of PIM, with the pan-PIM inhibitor SGI-1776, results in suppression of classic PIM effectors and also elements of the mTOR pathway, suggesting interplay between PIM and mTOR signals. Our data demonstrate that PIM inhibition enhances the effects of imatinib mesylate on Ph+ leukemia cells.
View Article and Find Full Text PDFWe provide evidence that human SLFN5, an interferon (IFN)-inducible member of the Schlafen (SLFN) family of proteins, exhibits key roles in controlling motility and invasiveness of renal cell carcinoma (RCC) cells. Our studies define the mechanism by which this occurs, demonstrating that SLFN5 negatively controls expression of the matrix metalloproteinase 1 gene (MMP-1), MMP-13, and several other genes involved in the control of malignant cell motility. Importantly, our data establish that SLFN5 expression correlates with a better overall survival in a large cohort of patients with RCC.
View Article and Find Full Text PDFBackground: Genome-wide transcriptome profiling generated by microarray and RNA-Seq often provides deregulated genes or pathways applicable only to larger cohort. On the other hand, individualized interpretation of transcriptomes is increasely pursued to improve diagnosis, prognosis, and patient treatment processes. Yet, robust and accurate methods based on a single paired-sample remain an unmet challenge.
View Article and Find Full Text PDFWe provide evidence that S6 kinase 1 (S6K1) Aly/REF-like target (SKAR) is engaged in IFN-α signaling and plays a key role in the generation of IFN responses. Our data demonstrate that IFN-α induces phosphorylation of SKAR, which is mediated by either the p90 ribosomal protein S6 kinase (RSK) or p70 S6 kinase (S6K1), in a cell type-specific manner. This type I IFN-inducible phosphorylation of SKAR results in enhanced interaction with the eukaryotic initiation factor (eIF)4G and recruitment of activated RSK1 to 5' cap mRNA.
View Article and Find Full Text PDFJ Interferon Cytokine Res
April 2014
Interferons (IFNs) are released by cells on exposure to various stimuli, including viruses, double-stranded RNA, and other cytokines and various polypeptides. These IFNs play important physiological and pathophysiological roles in humans. Many clinical studies have established activity for these cytokines in the treatment of several malignancies, viral syndromes, and autoimmune disorders.
View Article and Find Full Text PDFWe provide evidence that type I IFN-induced STAT activation is diminished in cells with targeted disruption of the Rictor gene, whose protein product is a key element of mTOR complex 2. Our studies show that transient or stable knockdown of Rictor or Sin1 results in defects in activation of elements of the STAT pathway and reduced STAT-DNA binding complexes. This leads to decreased expression of several IFN-inducible genes that mediate important biological functions.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) and Ph+ acute lymphoblastic leukemia (ALL) are characterized by the presence of the BCR-ABL oncoprotein, which leads to activation of a plethora of pro-mitogenic and pro-survival pathways, including the mTOR signaling cascade. We provide evidence that in BCR-ABL expressing cells, treatment with tyrosine kinase inhibitors (TKIs) results in upregulation of mRNA levels and protein expression of sestrin3 (SESN3), a unique cellular inhibitor of mTOR complex 1 (mTORC1). Such upregulation appears to be mediated by regulatory effects on mTOR, as catalytic inhibition of the mTOR kinase also induces SESN3.
View Article and Find Full Text PDFThere is emerging evidence that the IFN-inducible family of Slfn genes and proteins play important roles in cell cycle progression and control of cellular proliferation, but the precise functional roles of different Slfn members in the regulation of tumorigenesis remain unclear. In the present study, we undertook a systematic analysis on the expression and functional relevance of different mouse Slfn genes in malignant melanoma and renal cell carcinoma cells. Our studies demonstrate that several mouse Slfn genes are up-regulated in response to IFN treatment of mouse melanoma and renal cell carcinoma cells, including Slfn1, Slfn2, Slfn4, Slfn5, and Slfn8.
View Article and Find Full Text PDFAlternative splicing (AS) is an efficient mechanism that involves the generation of transcriptome and protein diversity from a single gene. Defects in pre-messenger RNA (mRNA) splicing are an important cause of numerous diseases, including cancer. AS of pre-mRNA as a target for cancer therapy has not been well studied.
View Article and Find Full Text PDFNuclear factor (NF)-YB, a subunit of the transcription factor nuclear factor Y (NF-Y) complex, binds and activates CCAAT-containing promoters. Our previous work suggested that NF-YB may be a mediator of topoisomerase IIα (Top2α), working through the Top2α promoter. DNA topoisomerase II (Top2) is an essential nuclear enzyme and the primary target for several clinically important anticancer drugs.
View Article and Find Full Text PDFThrough inhibitory G protein-coupled melatonin receptors, melatonin regulates intracellular signaling systems and also the transcriptional activity of certain genes. Clock genes are proposed as regulatory factors in forming dopamine-related behaviors and mood and melatonin has the ability to regulate these processes. Melatonin-mediated changes in clock gene expression have been reported in brain regions, including the striatum, that are crucial for the development of dopaminergic behaviors and mood.
View Article and Find Full Text PDFOBJECTIVES: In the mammalian brain, G protein-coupled MT(1) and MT(2) melatonin receptors may be involved in Alzheimer's pathology, long-term potentiation, depression, and in the behavioral effects of psychoactive drugs. These drugs; e.g.
View Article and Find Full Text PDFThe pineal product melatonin that acts on specific melatonin receptors has been implicated in pathobiological mechanisms of neuropsychiatric disorders including Alzheimer's disease. We used mice lacking melatonin MT(2) receptors (MT(2) knockouts) to investigate the role of these receptors in synaptic plasticity and learning-dependent behavior. In field CA1 of hippocampal slices from wild-type mice, theta burst stimulation induced robust and stable long-term potentiation that was smaller and decremental in slices from MT(2) knockouts.
View Article and Find Full Text PDFThe physiological effects of pineal melatonin are primarily mediated by melatonin receptors located in the brain and periphery. Even though there are a number of studies demonstrating the regulatory role of melatonin in the development of dopaminergic behaviors, such as psychostimulant-induced diurnal locomotor sensitization or drug seeking, little is known about the contribution of melatonin receptors (i.e.
View Article and Find Full Text PDFContribution of circadian mechanisms to the psychostimulant-induced behaviors has been suggested. The pineal gland is important component of circadian mechanisms. Using pinealectomized mice and sham-operated controls, we tested the contribution of pineal gland to the rewarding effects of cocaine in conditioned place preference test.
View Article and Find Full Text PDF