Publications by authors named "Ahmet A Yanik"

In nanophotonics, nanohole arrays (NHAs) are periodic arrangements of nanoscale apertures in thin films that provide diverse optical functionalities essential for various applications. Fully studying NHAs' optical properties and optimizing performance demands understanding both materials and geometric parameters, which presents a computational challenge due to numerous potential combinations. Efficient computational modeling is critical for overcoming this challenge and optimizing NHA-based device performance.

View Article and Find Full Text PDF

Harnessing the unprecedented spatiotemporal resolution capability of light to detect electrophysiological signals has been the goal of scientists for nearly 50 years. Yet, progress toward that goal remains elusive due to lack of electro-optic translators that can efficiently convert electrical activity to high photon count optical signals. Here, we introduce an ultrasensitive and extremely bright nanoscale electric-field probe overcoming the low photon count limitations of existing optical field reporters.

View Article and Find Full Text PDF

Optical chromatography is a powerful optofluidic technique enabling label-free fractionation of microscopic bioparticles from heterogenous mixtures. However, sophisticated instrumentation requirements for precise alignment of optical scattering and fluidic drag forces is a fundamental shortcoming of this technique. Here, we introduce a subwavelength thick (<200 nm) Optofluidic PlasmonIC (OPtIC) microlens that effortlessly achieves objective-free focusing and self-alignment of opposing optical scattering and fluidic drag forces for selective separation of exosome size bioparticles.

View Article and Find Full Text PDF

Quantitative analysis of fluorescence signals from cells reacted with fluorescently labeled probes is a widely-used method for assessing cell biology. This method has become especially powerful for screening novel nanostructured materials for their influence on cell behavior. However, the effect of nanostructured surface on fluorescence intensity has largely been ignored, which likely leads to erroneous conclusions about cell behavior.

View Article and Find Full Text PDF

The microfluidic isolation of target cells using adhesion-based surface capture has been widely explored for biology and medicine. However, high-throughput processing can be challenging due to interfacial limitations such as transport, reaction, and non-specific fouling. Here, it is shown that antibody-functionalized capture surfaces with discontinuous permeability enable efficient target cell capture at high flow rates by decreasing fouling.

View Article and Find Full Text PDF

Analogues of many radio frequency (RF) antenna designs such as the half-wave dipole and Yagi-Uda have been successfully adapted to the optical frequency regime, opening the door for important advances in biosensing, photodetection, and emitter control. Examples of monopole antennas, however, are conspicuously rare given the element's extensive use in RF applications. Monopole antennas are attractive as they represent an easy to engineer, compact geometry and are well isolated from interference due the ground plane.

View Article and Find Full Text PDF

We experimentally and numerically demonstrate a planar metamaterial consisting of two asymmetrically positioned π-structures in a single unit that exhibits plasmonic analogue of electromagnetically induced transparency (EIT). Through the coupling of the constituent nanorod elements, the proposed structure enables fine spectral tuning of the EIT-like behavior and controlling the location of near field enhancement. Originated from the asymmetric cascaded π-structures, we introduce a more compact system which possesses the EIT-like characteristics and as well as much smaller mode volumes.

View Article and Find Full Text PDF

Engineered optical metamaterials present a unique platform for biosensing applications owing to their ability to confine light to nanoscale regions and to their spectral selectivity. Infrared plasmonic metamaterials are especially attractive because their resonant response can be accurately tuned to that of the vibrational modes of the target biomolecules. Here we introduce an infrared plasmonic surface based on a Fano-resonant asymmetric metamaterial exhibiting sharp resonances caused by the interference between subradiant and superradiant plasmonic resonances.

View Article and Find Full Text PDF

Microarrays allowing simultaneous analysis of thousands of parameters can significantly accelerate screening of large libraries of pharmaceutical compounds and biomolecular interactions. For large-scale studies on diverse biomedical samples, reliable, label-free, and high-content microarrays are needed. In this work, using large-area plasmonic nanohole arrays, we demonstrate for the first time a large-scale label-free microarray technology with over one million sensors on a single microscope slide.

View Article and Find Full Text PDF

We experimentally demonstrate for the first time a very compact plasmonic hetero-oligomer structure where the multiple radiant and subradiant modes can be tailored independently. Unlike previous approaches based on collective excitations in complex plasmonic systems, we show precise engineering of resonances leading to simultaneous spectral overlap of multiple plasmonic modes with opposite radiative character. This asymmetric behavior combined with inherent spatial features of the structure leads to directional double Fano resonances as shown with numerical analysis.

View Article and Find Full Text PDF

Our recent work has showed that diffractively coupled nanoplasmonic arrays for Fourier transform infrared (FTIR) microspectroscopy can enhance the Amide I protein vibrational stretch by up to 10(5) times as compared to plain substrates. In this work we consider computationally the impact of a microscope objective illumination cone on array performance. We derive an approach for computing angular- and spatially-averaged reflectance for various numerical aperture (NA) objectives.

View Article and Find Full Text PDF

We introduce an ultrasensitive label-free detection technique based on asymmetric Fano resonances in plasmonic nanoholes with far reaching implications for point-of-care diagnostics. By exploiting extraordinary light transmission phenomena through high-quality factor (Q(solution) ∼ 200) subradiant dark modes, we experimentally demonstrate record high figures of merits (FOMs as high as 162) for intrinsic detection limits surpassing that of the gold standard prism coupled surface-plasmon sensors (Kretschmann configuration). Our experimental record high sensitivities are attributed to the nearly complete suppression of the radiative losses that are made possible by the high structural quality of the fabricated devices as well as the subradiant nature of the resonances.

View Article and Find Full Text PDF

We introduce an approach enabling construction of a scalable metamaterial media supporting multispectral plasmon induced transparency. The composite multilayered media consist of coupled meta-atoms with radiant and subradiant hybridized plasmonic modes interacting through the structural asymmetry. A perturbative model incorporating hybridization and mode coupling is introduced to explain the observed novel spectral features.

View Article and Find Full Text PDF

Fast and sensitive virus detection techniques, which can be rapidly deployed at multiple sites, are essential to prevent and control future epidemics and bioterrorism threats. In this Letter, we demonstrate a label-free optofluidic nanoplasmonic sensor that can directly detect intact viruses from biological media at clinically relevant concentrations with little to no sample preparation. Our sensing platform is based on an extraordinary light transmission effect in plasmonic nanoholes and utilizes group-specific antibodies for highly divergent strains of rapidly evolving viruses.

View Article and Find Full Text PDF

The introduction of high-throughput and high-resolution nanofabrication techniques operating at low cost and low complexity is essential for the advancement of nanoplasmonic and nanophotonic fields. In this paper, we demonstrate a novel fabrication approach based on nanostencil lithography for high-throughput fabrication of engineered infrared plasmonic nanorod antenna arrays. The technique relying on deposition of materials through a shadow mask enables plasmonic substrates supporting spectrally sharp collective resonances.

View Article and Find Full Text PDF

It is generally accepted that the lifetimes of the localized plasmonic excitations are inherently controlled by the type of the metals and the shape of the nanoparticles. However, extended plasmonic lifetimes and enhanced near-fields in nanoparticle arrays can be achieved as a result of collective excitation of plasmons. In this article, we demonstrate significantly longer plasmon lifetimes and stronger near-field enhancements by embedding the nanoantenna arrays into the substrate.

View Article and Find Full Text PDF

The extraordinary light transmission effect (EOT) through sub-wavelength nanoapertures in opaque metal films has lead to observation of a wide variety of exciting new optical phenomena. This remarkable effect is generally related to the interaction of the light with the extended plasmonic resonances on the surface of the metal film and localized surface plasmons in the apertures. On the other hand, there is little conceptual understanding for controlling the localized surface plasmonic behavior of the individual apertures and their coupling to the extended surface plasmons.

View Article and Find Full Text PDF

We introduce a novel sensor scheme combining nano-photonics and nano-fluidics on a single platform through the use of free-standing photonic crystals. By harnessing nano-scale openings, we theoretically and experimentally demonstrate that both fluidics and light can be manipulated at sub-wavelength scales. Compared to the conventional fluidic channels, we actively steer the convective flow through the nanohole openings for effective delivery of the analytes to the sensor surface.

View Article and Find Full Text PDF

We experimentally demonstrate that hybridized nanocavities in optically thick metal films radiate in coherence, and act as an efficient single-polarized plasmonic nano-antenna array. We employ propagating and localized plasmons to enhance polarization control along one axis, with total suppression of the perpendicular polarization component. The relationship between the near-field and far-field radiation is established through a quasi-static model connecting the individual nano-antenna behavior to the phenomenon of extraordinary light transmission.

View Article and Find Full Text PDF

Infrared absorption spectroscopy enabling direct access to vibrational fingerprints of the molecular structure is a powerful method for functional studies of bio-molecules. Although the intrinsic absorption cross-sections of IR active modes of proteins are nearly 10 orders of magnitude larger than the corresponding Raman cross-sections, they are still small compared to that of fluorescence-label based methods. Here, we developed a new tool based on collective excitation of plasmonic nanoantenna arrays and demonstrated direct detection of vibrational signatures of single protein monolayers.

View Article and Find Full Text PDF