Publications by authors named "Ahmed Slimani"

We investigate a method for fabricating layers that exhibit both high optical absorption and promising thermoelectric properties. Using plasma-enhanced chemical vapor deposition (PECVD), amorphous Si and SiGe layers are deposited on glass substrates and subsequently processed via laser annealing to achieve nanostructured layers. Our results show that a single laser annealing pulse at 40 mJ yields the highest power factor, approximately 90 μW/m·K.

View Article and Find Full Text PDF

Nanocomposite polymer films are a very diverse research field due to their many applications. The search for low-cost, versatile methods, producing regulated properties of the final products, has thus become extremely relevant. We have previously reported a bulk-scale process, dispersing granulated metal oxide nanoparticles, of both unary and multi-component nature, in a low-density polyethylene (LDPE) polymer matrix, establishing a reference in the produced films' optical properties, due to the high degree of homogeneity and preservation of the primary particle size allowed by this method.

View Article and Find Full Text PDF

The development of heterostructure materials may lead to new features that cannot be obtained with natural materials. Here we simulate a model structurally hybrid core-shell nanoparticle with different lattice parameters between an electronically inert shell and an active spin crossover core. The nanoparticle consists of a 2D core with 20 × 20 size with square symmetry, surrounded by a shell made of 10 atomic layers.

View Article and Find Full Text PDF

The rate of the light-induced spin transition in a coordination polymer network solid dramatically increases when included as the core in mesoscale core-shell particles. A series of photomagnetic coordination polymer core-shell heterostructures, based on the light-switchable Rb Co [Fe(CN)] · mHO (RbCoFe-PBA) as core with the isostructural K Ni [Cr(CN)] · nHO (KNiCr-PBA) as shell, are studied using temperature-dependent powder X-ray diffraction and SQUID magnetometry. The core RbCoFe-PBA exhibits a charge transfer-induced spin transition (CTIST), which can be thermally and optically induced.

View Article and Find Full Text PDF

We investigated by means of optical microscopy (OM) the spatiotemporal features of the thermo-induced spin transition of [Fe(2-pytrz)2{Pd(CN)4}]·3H2O (1) (2-pytrz = 4-(2-pyridyl)-1,2,4,4H-triazole) single crystals having two different shapes (triangle and rectangle). While magnetic and calorimetric measurements, performed on a polycrystalline material, showed the respective average heating and cooling transition temperatures of (Tdown1/2 ∼ 152 K, Tup1/2 ∼ 154 K) and (Tdown1/2 ∼ 160.0 K, Tup1/2 ∼ 163.

View Article and Find Full Text PDF

By using a weak modulated laser intensity we have succeeded in reversibly controlling the dynamics of the spin-crossover (SC) single crystal [{Fe(NCSe)(py)2 }2 (m-bpypz)] inside the thermal hysteresis. The experiment could be repeated several times with a reproducible response of the high-spin low-spin interface and without crystal damage. In-depth investigations as a function of the amplitude and frequency of the excitation brought to light the existence of a cut-off frequency ca.

View Article and Find Full Text PDF

The required approach to investigate the electronic properties of spin-crossover (SCO) compounds needs to be able to provide a reliable estimate of high-spin/low-spin (HS/LS) energy gaps while retaining an accurate and efficient computation of the ground-state energy. We propose a reparametrization approach of the density functional theory (DFT) functionals to adjust the exact exchange admixture that governs the HS/LS energy splitting. Through the investigation of the thermodynamic properties of two typical SCO compounds, we demonstrate that the computed equilibrium temperature depends linearly, like the HS/LS energy gap, on the coefficient of the exact exchange admixture.

View Article and Find Full Text PDF

We investigated by optical microscopy the thermal transition of the spin-crossover dinuclear iron(II) compound [(Fe(NCSe)(py)(2))(2)(m-bpypz)]. In a high-quality crystal the high-spin (HS) low-spin (LS) thermal transition took place with a sizable hysteresis, at ~108 K and ~116 K on cooling and heating, respectively, through the growth of a single macroscopic domain with a straight LS and HS interface. The interface orientation was almost constant and its propagation velocity was close to ~6 and 26 μ m s(-1) for the on-cooling and on-heating processes, respectively.

View Article and Find Full Text PDF

In 1993 by law, in France, haemovigilance became a national system of surveillance and alert, from blood collection to the follow-up of the recipients, gathering and analysing all adverse events of blood transfusion in order to prevent their recurrences. In 2003, 2911 incidents with strong imputability have been specially analysed, among them seven confirmed cases of bacterial contamination, 137 incorrect blood components transfused with 12 cases of ABO incompatibility, 15 adverse reactions diagnosed as TRALI and 12 deaths. The analysis of information provided by haemovigilance has led to the implementation of new guidelines.

View Article and Find Full Text PDF