Publications by authors named "Ahmed Shaffie"

Background And Objective: Lung cancer is an important cause of death and morbidity around the world. Two of the primary computed tomography (CT) imaging markers that can be used to differentiate malignant and benign lung nodules are the inhomogeneity of the nodules' texture and nodular morphology. The objective of this paper is to present a new model that can capture the inhomogeneity of the detected lung nodules as well as their morphology.

View Article and Find Full Text PDF

Lung cancer is one of the most dreadful cancers, and its detection in the early stage is very important and challenging. This manuscript proposes a new computer-aided diagnosis system for lung cancer diagnosis from chest computed tomography scans. The proposed system extracts two different kinds of features, namely, appearance features and shape features.

View Article and Find Full Text PDF

Purpose: To assess whether the integration between (a) functional imaging features that will be extracted from diffusion-weighted imaging (DWI); and (b) shape and texture imaging features as well as volumetric features that will be extracted from T2-weighted magnetic resonance imaging (MRI) can noninvasively improve the diagnostic accuracy of thyroid nodules classification.

Patients And Methods: In a retrospective study of 55 patients with pathologically proven thyroid nodules, T2-weighted and diffusion-weighted MRI scans of the thyroid gland were acquired. Spatial maps of the apparent diffusion coefficient (ADC) were reconstructed in all cases.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The integrated discriminating features may lead to the development of a novel comprehensive renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between benign and malignant renal tumors and specify the malignancy subtypes for optimal medical management.

View Article and Find Full Text PDF

Liver cancer is a major cause of morbidity and mortality in the world. The primary goals of this manuscript are the identification of novel imaging markers (morphological, functional, and anatomical/textural), and development of a computer-aided diagnostic (CAD) system to accurately detect and grade liver tumors non-invasively. A total of 95 patients with liver tumors (M = 65, F = 30, age range = 34-82 years) were enrolled in the study after consents were obtained.

View Article and Find Full Text PDF

This study presents a non-invasive, automated, clinical diagnostic system for early diagnosis of lung cancer that integrates imaging data from a single computed tomography scan and breath bio-markers obtained from a single exhaled breath to quickly and accurately classify lung nodules. CT imaging and breath volatile organic compounds data were collected from 47 patients. Spherical Harmonics-based shape features to quantify the shape complexity of the pulmonary nodules, 7th-Order Markov Gibbs Random Field based appearance model to describe the spatial non-homogeneities in the pulmonary nodule, and volumetric features (size) of pulmonary nodules were calculated from CT images.

View Article and Find Full Text PDF

A novel framework for the classification of lung nodules using computed tomography scans is proposed in this article. To get an accurate diagnosis of the detected lung nodules, the proposed framework integrates the following 2 groups of features: (1) appearance features modeled using the higher order Markov Gibbs random field model that has the ability to describe the spatial inhomogeneities inside the lung nodule and (2) geometric features that describe the shape geometry of the lung nodules. The novelty of this article is to accurately model the appearance of the detected lung nodules using a new developed seventh-order Markov Gibbs random field model that has the ability to model the existing spatial inhomogeneities for both small and large detected lung nodules, in addition to the integration with the extracted geometric features.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionk20es3e6d436n2m0mi6ble8tvnj1obeg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once