Publications by authors named "Ahmed S Zidan"

For proportionally formulated intermediate strengths of a topical product, the relationship of drug release across multiple strengths of a given product is not always well understood. The current study aims to assess the proportionality of tretinoin release rates across multiple strengths of tretinoin topical gels when manufactured using two different methods to understand the impact of formulation design on drug product microstructure and tretinoin release rate. Two groups of tretinoin gels of 0.

View Article and Find Full Text PDF

Drug release from microparticle-based topical gels may affect their bioavailability, safety and efficacy. This work sought to elucidate spatial distribution of the drug within the microparticle matrix and how this impacts the product's critical performance attributes. The purpose of this research was to inform the development of in vitro characterization approaches to support a demonstration of bioequivalence.

View Article and Find Full Text PDF

This work aimed to develop a three-dimensional printed (3DP) tablet containing glimepiride (GLMP) and/or rosuvastatin (RSV) for treatment of dyslipidemia in patients with diabetes. Curcumin oil was extracted from the dried rhizomes of and utilized to develop a self-nanoemulsifying drug delivery system (SNEDDS). Screening mixture experimental design was conducted to develop SNEDDS formulation with a minimum droplet size.

View Article and Find Full Text PDF

To understand effects of formulation variables on the critical quality attributes (CQA) of acyclovir topical cream, this study investigated effects of propylene glycol (PG), poloxamer, and sodium lauryl sulfate (SLS) concentrations, acyclovir particle size, and formulation pH of the acyclovir cream. Fifteen formulations were prepared and characterized for rheological properties, particle size distribution, drug release and in vitro skin permeation. Drug distribution between various phases of the cream was determined.

View Article and Find Full Text PDF

The current study investigated the use of synthetic membranes in developing a bio-predictive in vitro permeation testing (IVPT) method for 1.62% testosterone gel. The IVPT studies were carried out using both Franz (FC), and Flow-through (FTC) diffusion cells.

View Article and Find Full Text PDF

This study investigated the effects of drug recrystallization on the in vitro performance of testosterone drug-in-adhesive transdermal delivery system (TDS). Six formulations were prepared with a range of dry drug loading in the adhesive matrix from 1% to 10% w/w with the aim of generating TDS with various levels of drug crystals. We visually quantified the amount of crystals in TDS by polarized light microscopy.

View Article and Find Full Text PDF

Study of mixing and segregation of granular materials was performed in a Bohle bin blender using both computational modeling and experiments. A multicomponent mixture of pharmaceutical excipients and coated theophylline granules, an active pharmaceutical ingredient (API) was considered as the blend formulation. A DEM (Discrete Element Method) Model was developed to simulate the flow and mixing of the multicomponent blend to compare with the experimental data.

View Article and Find Full Text PDF

Pseudoephedrine (PSE) extracted from its dosage forms can be used as the starting material to prepare methamphetamine by drug abusers. Recently, some pseudoephedrine drug products marketed under the over the counter (OTC) monograph have been promoted as 'meth-deterrent'. The goal of this investigation was to evaluate the extraction and dissolution of these product against controls of non-meth-deterrent products of pseudoephedrine.

View Article and Find Full Text PDF

The primary objective of the research study is to investigate Glucose (GLUT) transporter targeting of the drug (Citalopram-Hbr) for increased permeability across the Blood-Brain Barrier (BBB). The current study reports the development, physicochemical characterization, cytotoxicity analysis and in-vitro BBB permeability assessment of the Citalopram-Hbr liposomal formulations. Rat Primary Brain Microvascular Endothelial Cells (RPBECs) were used for cytotoxicity analysis and drug permeability testing.

View Article and Find Full Text PDF

The objective of the current study was to optimize for the first time the formulation variables of self-emulsified drug delivery system (SEDDS) based on drug solubilization during lipolysis under a biorelevant condition of digestion such as lipase activity, temperature, pH, fed-fasting state, etc. Nimodipine (ND), a BCS class II, was used as a model drug to prepare the SEDDS. Various oils, surfactants, and cosurfactants were screened for their solubilization potential of ND.

View Article and Find Full Text PDF

Leachables derived from multi-component drug-device syringe systems can result in changes to the quality of drug products. Diphenylguanidine (DPG), a leachable released from styrene butadiene rubber syringe plungers, interacts with Oxytocin to form protein-adducts. This study investigated the mechanism and kinetics of this interaction in both solid and solution states through in-vitro tests and spectroscopic methods For solid state interaction, the protein-adducts with DPG were characterized using SEM, XRD, DSC, FTIR, C ss NMR, and dissolution analysis.

View Article and Find Full Text PDF

Dermal drug delivery system which localizes methotrexate (MTX) in the skin is advantageous in topical treatment of psoriasis. The aim of the current study was to understand dilution effects and formulation variability for the potential formation of niosomes from proniosome gels of MTX. Box-Behnken's design was employed to prepare a series of MTX proniosome gels of Span 40, cholesterol (Chol-X) and Tween 20 (T20-X).

View Article and Find Full Text PDF

The objective of the present study was to investigate the effect of isopropyl myristate (IPM) on the in vitro permeation of testosterone through human cadaver skin from carbopol gels. Six testosterone gel formulations were prepared using different IPM contents of 0%, 0.4%, 0.

View Article and Find Full Text PDF

Tenofovir, currently marketed as the prodrug tenofovir disoproxil fumarate, is used clinically to treat patients with HIV/AIDS. The oral bioavailability of tenofovir is relatively low, limiting its clinical effectiveness. Encapsulation of tenofovir within modified long-circulating liposomes would deliver this hydrophilic anti-HIV drug to the reticuloendothelial system for better therapeutic efficacy.

View Article and Find Full Text PDF

The objective of the present investigation was to understand the effects of excipients and curing process on the abuse deterrent properties (ADP) of Polyox™ based directly compressible abuse deterrent tablet formulations (ADFs). The excipients investigated were lactose (monohydrate or anhydrous), microcrystalline cellulose and hydroxypropyl methylcellulose. The ADPs studied were tablet crush resistance or hardness, particle size distribution following mechanical manipulation, drug extraction in water and alcohol, syringeability and injectability.

View Article and Find Full Text PDF

Nicotinamide, the amide form of vitamin B3, was demonstrated to combat some of the antibiotic-resistant infections that are increasingly common around the world. The objective of this study was to thoroughly understand the formulation and process variabilities affecting the preparation of nicotinamide-loaded polymeric nanoemulsified particles. The quality target product profile and critical quality attributes of the proposed product were presented.

View Article and Find Full Text PDF

Objectives: The study aims at applying pharmaceutical nanotechnology and D-optimal fractional factorial design to screen and optimize the high-risk variables affecting the performance of a complex drug delivery system consisting of glimepiride-Zein nanoparticles and inclusion of the optimized formula with thermoresponsive triblock copolymers in in situ gel.

Methods: Sixteen nanoparticle formulations were prepared by liquid-liquid phase separation method according to the D-optimal fractional factorial design encompassing five variables at two levels. The responses investigated were glimepiride entrapment capacity (EC), particle size and size distribution, zeta potential, and in vitro drug release from the prepared nanoparticles.

View Article and Find Full Text PDF

Through the integration of orthogonal central composite design and desirability function, this work aimed to explore the potential of quality by design in understanding the formulation of phospholipid-stabilized tacrolimus nanodispersions by microfluidization. The influence of homogenization pressure, microfluidization time and phospholipid concentration (X1-X3) on nanodispersion performance was studied. Nanodispersions were characterized by differential scanning calorimetric (DSC), X-ray diffractometer (XRD) and Fourier transform infrared (FTIR) analysis.

View Article and Find Full Text PDF

Effectiveness of CNS-acting drugs depends on the localization, targeting, and capacity to be transported through the blood-brain barrier (BBB) which can be achieved by designing brain-targeting delivery vectors. Hence, the objective of this study was to screen the formulation and process variables affecting the performance of sertraline (Ser-HCl)-loaded pegylated and glycosylated liposomes. The prepared vectors were characterized for Ser-HCl entrapment, size, surface charge, release behavior, and in vitro transport through the BBB.

View Article and Find Full Text PDF

This study was aimed at developing risperidone oral disintegrating mini-tablets (OD-mini-tablets) as age-appropriate formulations and to assess their suitability for infants and pediatric use. An experimental Box-Behnken design was applied to assure high quality of the OD-mini-tablets and reduce product variability. The design was employed to understand the influence of the critical excipient combinations on the production of OD-mini-tablets and thus guarantee the feasibility of obtaining products with dosage form uniformity.

View Article and Find Full Text PDF

This study aimed at employing Plackett-Burman design in screening formulation variables that affect quality of matrix-type simvastatin (SMV) transdermal film. To achieve this goal, 12 formulations were prepared by casting method. The investigated variables were Eudragit RL percentage, polymer mixture percentage, plasticizer type, plasticizer percentage, enhancer type, enhancer percentage and dichloromethane fraction in organic phase.

View Article and Find Full Text PDF

Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood-brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size.

View Article and Find Full Text PDF

This study is aimed at developing glimepiride (GMD) liposomal films using quality by design (QbD) and process analytical technology (PAT) principles. Risk analysis and Plackett-Burman design were utilized to evaluate formulation variables in two paths. Internal path included liposomal parameters (phosphatidylserine, cholesterol and drug concentrations, and pH of hydration medium).

View Article and Find Full Text PDF

Pharmaceutical development was adopted in the current study to propose a pediatric rectal formulation of sulpiride as a substitute to the available oral or parenteral formulations in the management of Tourette syndrome (TS). The goal was to formulate a product that is easy to use, stable, and highly bioavailable and to achieve a rapid clinical efficacy. Towards this aim, sulpiride solid dispersion (SD) with tartaric acid at a weight ratio of 1:0.

View Article and Find Full Text PDF