Publications by authors named "Ahmed Mohamed Helmi"

Human activity recognition (HAR) plays a vital role in different real-world applications such as in tracking elderly activities for elderly care services, in assisted living environments, smart home interactions, healthcare monitoring applications, electronic games, and various human-computer interaction (HCI) applications, and is an essential part of the Internet of Healthcare Things (IoHT) services. However, the high dimensionality of the collected data from these applications has the largest influence on the quality of the HAR model. Therefore, in this paper, we propose an efficient HAR system using a lightweight feature selection (FS) method to enhance the HAR classification process.

View Article and Find Full Text PDF

Condition monitoring (CM) is a useful application in industry 4.0, where the machine's health is controlled by computational intelligence methods. Data-driven models, especially from the field of deep learning, are efficient solutions for the analysis of time series sensor data due to their ability to recognize patterns in high dimensional data and to track the temporal evolution of the signal.

View Article and Find Full Text PDF