Per- and polyfluoroalkyl substances (PFAS), a class of man-made chemicals, possess unique properties that have rendered them indispensable in various industries and consumer goods. However, their extensive use and persistence in the environment have raised concerns about their potential repercussions on human health and the ecosystem. This review provides insights into the sources, occurrence, transformation, impacts, fate, monitoring, and remediation strategies for PFAS.
View Article and Find Full Text PDFThe generation of municipal solid waste is projected to increase from 2.1 billion tonnes in 2023 to 3.8 billion tonnes by 2050.
View Article and Find Full Text PDFIn the ever-evolving world of materials science, modifying natural polymers has garnered significant attention across diverse industries, driven by their inherent availability and cost-effectiveness. Among these, chitosan, a pseudo-natural cationic polymer, has emerged as a versatile player, finding applications in medical, pharmaceutical, filtration, and textile sectors, owing to its exceptional biodegradability, non-allergenicity, antimicrobial properties, and eco-friendly nature. However, the limitations of chitosan, such as low surface area, poor solubility at neutral to alkaline pH, and inadequate thermal-mechanical properties, have prompted researchers to explore innovative modification strategies, including graft copolymerization, quaternization, and cross-linking.
View Article and Find Full Text PDFThe gas flaring network is an inseparable constituent commonly present in most of the oil and gas refineries and petrochemical facilities conferring reliable operational parameters. The improper disposal of burn-off gases improperly results in environmental problems and loss of economic resources. In this regard, waste to energy transforming nexus, in accord with the "carbon neutrality" term, has potentially emerged as a reasonable pathway to preserve our planet.
View Article and Find Full Text PDFMercury is a type of hazardous and toxic pollutant that can result in detrimental effects on the environment and human health. This review is aimed at discussing the state-of-the-art progress on the recent developments on the toxicity of mercury and its chemical compounds. More than 210 recent works of literature are covered in this review.
View Article and Find Full Text PDFHarnessing coastal biowaste for dual valorization in water treatment and biofuel production holds paramount importance for sustainability and resource challenges. This study investigated the potential of engineered composite (CABC) derived from coastal biowaste-based materials for tetracycline (TC) removal and biomethane production. High-yield calcium carbonate (CaCO; 95.
View Article and Find Full Text PDFThis study investigated the successful synthesis of functionalized algal biochar-clay composite (FBKC). Subsequently, the sorption performance of FBKC towards norfloxacin (NFX) antibiotic and crystal violet dye (CVD) from water was extensively assessed in both batch and continuous flow systems. A series of characterization techniques were carried out for FBKC and the utilized precursors, indicating that the surface area of FBKC was increased thirty-fold with a well-developed pore structure compared to the original precursors.
View Article and Find Full Text PDFMicroplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics.
View Article and Find Full Text PDFIn the present era of significant industrial development, the presence and dispersal of countless water contaminants in water bodies worldwide have rendered them unsuitable for various forms of life. Recently, the awareness of environmental sustainability for wastewater treatment has increased rapidly in quest of meeting the global water demand. Despite numerous conventional adsorbents on deck, exploring low-cost and efficient adsorbents is interesting.
View Article and Find Full Text PDFHydrogel membranes are prepared by casting a mixture of gellan gum (associated with PVA) and biochar produced from a local Egyptian plant. The mesoporous material is characterized by a specific surface area close to 134 m g, a residue of 28 % (at 800 °C), and a pH close to 6.43.
View Article and Find Full Text PDFGlobal water security and energy demands associated with uncontrollable population growth and rapid industrial progress are one of the utmost serious needs dangerously confronting humanity. On account of waste as a wealth strategy; a multifunctional eco-friendly sorbent (MGAP) from green alga was prepared successfully for remediation of cationic/anionic organic dyes and biohydrogen production. The structural and morphological properties of sorbent were systematically scrutinized by a variety of spectral analyses.
View Article and Find Full Text PDFThe existence of toxic heavy metals in the aquatic environment has emphasized a considerable exigency to develop several multifunctional biosorbents for their removal. Herein, three individual bacterial species of Cellulosimicrobium cellulans, Bacillus coagulans, and Microbacterium testaceum were successfully isolated from low-level liquid radioactive wastes. Their loading capacities towards cerium and cobalt metal ions were inclusivity inspected under variable operational parameters of pH, primary pollutant concentration, interaction time, temperature, stirring speed, and biosorbent dosage.
View Article and Find Full Text PDFPlastic and biomass waste pose a serious environmental risk; thus, herein, we mixed biomass waste with plastic bottle waste (PET) to produce char composite materials for producing a magnetic char composite for better separation when used in water treatment applications. This study also calculated the life cycle environmental impacts of the preparation of adsorbent material for 11 different indicator categories. For 1 functional unit (1 kg of pomace leaves as feedstock), abiotic depletion of fossil fuels and global warming potential were quantified as 7.
View Article and Find Full Text PDFMetal-organic frameworks are porous polymeric materials formed by linking metal ions with organic bridging ligands. Metal-organic frameworks are used as sensors, catalysts for organic transformations, biomass conversion, photovoltaics, electrochemical applications, gas storage and separation, and photocatalysis. Nonetheless, many actual metal-organic frameworks present limitations such as toxicity of preparation reagents and components, which make frameworks unusable for food and pharmaceutical applications.
View Article and Find Full Text PDFIn the context of climate change and the circular economy, biochar has recently found many applications in various sectors as a versatile and recycled material. Here, we review application of biochar-based for carbon sink, covering agronomy, animal farming, anaerobic digestion, composting, environmental remediation, construction, and energy storage. The ultimate storage reservoirs for biochar are soils, civil infrastructure, and landfills.
View Article and Find Full Text PDFTo adequately address the grave human health risks and environmental damage caused by the uncontrolled utilization of organic dyes, we greenly synthesized iron oxide nanoparticles (IONPs) using micro-algae for sequestration of cationic methylene blue (MB) dye from an aqueous solution. The nano-engineered sorbent was thoroughly scrutinized by different spectral analyses of; FT-IR, SEM, EDX, BET surface area, TEM, VSM, UV/Vis spectroscopy, and PH measurement. The adsorption of MB was methodically carried out in a batch process to investigate the effects of initial pH (2.
View Article and Find Full Text PDFGlobally, organic dyes are major constituents in wastewater effluents due to their large-scale industrial applications. These persistent pollutants adversely impact the public health of different living entities. Thus, wastewater remediation has become an indispensable necessity.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2019
Monolithic algal green powder (MAGP) was fabricated based on the marine green macroalga Enteromorpha flexuosa. It was scrutinized by using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR), point of zero charge (PH), and Brunauer-Emmett-Teller (BET) surface area. The ability of Enteromorpha flexuosa to capture both crystal violet (CV) and methylene blue (MB) from aqueous solutions was evaluated.
View Article and Find Full Text PDFMagnetic Schiff's base chitosan composite has been prepared starting from shrimp peels as a raw material. Chitosan extraction involved three main stages as preconditioning, demineralization deproteinization and deacetylation. Chitosan modification process took place through the reaction between chitosan and polymeric Schiff's base of thiourea/glutaraldehyde in the presence of magnetite.
View Article and Find Full Text PDF