Acid rain and invasive plants have quintessential adverse impacts on terrestrial ecosystems. As an environmentally safe method for disposal of invasive plants, we tested the effect of biochar produced from these plants in altering soil deterioration under acid rain as compared with lime. Given the impacts of the feedstock type and soil properties on the response of soil to the added biochar, we hypothesized that the microbial community and functions would respond differently to the charred invasive plants under acid rain.
View Article and Find Full Text PDFMore than half of the world's population is nourished by crops fertilized with synthetic nitrogen (N) fertilizers. However, N fertilization is a major source of anthropogenic emissions, augmenting the carbon footprint (CF). To date, no global quantification of the CF induced by N fertilization of the main grain crops has been performed, and quantifications at the national scale have neglected the CO assimilated by plants.
View Article and Find Full Text PDFPartial replacement of chemicals with biological fertilizers is a recommended strategy to reduce the adverse environmental effects of chemical fertilizer losses. Enhancing the reduced mineral with biological fertilizers strategy by foliar application of humic acid (HA) and amino acids (AA) can reduce environmental hazards, while improving maize (.) production under semiarid conditions.
View Article and Find Full Text PDFCropland reactive nitrogen losses (Nr) are of the greatest challenges facing sustainable agricultural intensification to meet the increases in food demand. The environmental impacts of Nr losses and their yield responses to the mitigation strategies were not completely evaluated. We assessed the environmental impacts of Nr losses in China and coupled the efficiency of mitigation actions with yield responses.
View Article and Find Full Text PDFManaging reactive nitrogen (Nr) in agricultural production is crucial for addressing the triple challenges of food security, climate change and environmental degradation. Intensive work has been conducted to investigate the effects of mitigation strategies on reducing Nr losses by ammonia emission (Nr-NH), nitrous oxide emission (Nr-NO) and nitrate leaching (Nr-NO) separately. This meta-analysis evaluated the efficiency of each strategy in mitigating Nr losses coupled with grain yield responses.
View Article and Find Full Text PDFLimited water resources are one of the major challenges facing Egypt during the current stage. The agricultural drainage water is an important water resource which can be reused for agriculture. Thus, the current study aims to assess the quality of drainage water for irrigation purpose through monitoring and predicting its suitability for irrigation.
View Article and Find Full Text PDFNitrification inhibition as an alleviation tool to decrease nitrogen (N) losses and increase N use efficiency (NUE) as well as reducing NO accumulation in plants is a promising technology. No study thus far has directly or indirectly to use the secondary metabolites extracted from Moringa (Moringa oleifera Lam) seeds as nitrification inhibitors. Moringa seed extract (MSE) was studied based on its content of phenolic compounds (PC) and for its antioxidant characteristic.
View Article and Find Full Text PDFEgypt is the largest nitrogen (N) fertilizer consumer in Africa. However, its nitrogen use efficiency (NUE) is low, and the relationships between both dietary options and the NUE trend with reactive N (Nr) release into the environment in Egypt have not yet been studied. In this study, we estimated the changes in the N budget and NUE in Egypt during the past 56 years (1961-2016).
View Article and Find Full Text PDF