Publications by authors named "Ahmed I A Soliman"

Knoevenagel condensation is a chemical reaction between aldehydes and active methylene-containing compounds in the presence of heterogeneous, basic homogenous organic or inorganic catalysts and solvent or neat systems. Herein, we introduced a new strategy for this synthesis by using the aqueous solution of cationic kraft lignin (CKL) as a catalyst. The CKL was synthesized through the reaction of kraft lignin (KL) with glycidyltrimethylammonium chloride (GTMAC) in a basic medium.

View Article and Find Full Text PDF

The development of biodegradable and active cellulosic-based heterogeneous catalysts for the synthesis of different organic compounds would be attractive in pharmaceutical and petrochemical-related industries. Herein, a post-sulfonated composite of one-pot synthesized magnetite (FeO) and cellulose nanocrystals (CNCs) was used as an effective and easily separable heterogeneous catalyst for activating the Knoevenagel and Thorpe-Ziegler reactions. The composite was developed hydrothermally from microcrystalline cellulose (MCC), iron chlorides, urea, and hydrochloric acid at 180 °C for 20 h in a one-pot reaction.

View Article and Find Full Text PDF

The composite of magnetite (FeO) and cellulose nanocrystal (CNC) is considered a potential adsorbent for water treatment and environmental remediation. In the current study, a one-pot hydrothermal procedure was utilized for magnetic cellulose nanocrystal (MCNC) development from microcrystalline cellulose (MCC) in the presence of ferric chloride, ferrous chloride, urea, and hydrochloric acid. The x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and Fourier-transform infrared spectroscopy analysis confirmed the presence of CNC and FeO, while transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis verified their respective sizes (< 400 nm and ≤ 20 nm) in the generated composite.

View Article and Find Full Text PDF

In the present study, a new series of different heterocycles was synthesized through base-free Knoevenagel condensation of various aldehydes and active methylene-containing compounds using the hydrothermal developed Ag@TiO as a heterogeneous catalyst. The catalyst was synthesized by mixing TiO (P25) with AgNO and hydrothermally treated in ethanol at 180 °C for 12 h. The developed Ag@TiO catalyst was directly applied for Knoevenagel condensation, and the optimized procedure involved stirring the aldehydes and active methylene-containing compounds with Ag@TiO in ethanol at 65 °C.

View Article and Find Full Text PDF

Removing organic contaminants such as dyes from water is essential to purify wastewater. Herein, zeolitic imidazolate framework-8 (ZIF-8) and ZnO@N-doped C are reported as effective adsorbents and photocatalysts for the adsorption and degradation of organic dyes. The materials showed effective and selective adsorption toward anionic dyes such as methyl blue (MeB) dye in the presence of fluorescein (FLU) dye.

View Article and Find Full Text PDF

Schiff bases represent an essential class in organic chemistry with antitumor, antiviral, antifungal, and antibacterial activities. The synthesis of Schiff bases requires the presence of an organic base as a catalyst such as piperidine. Base-free synthesis of organic compounds using a heterogeneous catalyst has recently attracted more interest due to the facile procedure, high yield, and reusability of the used catalyst.

View Article and Find Full Text PDF

In this report, micropatterns of (3-aminopropyl)trimethoxysilane (APTMS) were developed on hydrophilic and hydrophobic surfaces after patterning using 172 nm vacuum ultraviolet (VUV) photolithography. Self-assembled monolayers (SAMs) formed on Si substrates through UV hydrosilylation of 1-hexadecene (HD) and 10-undecenoic acid (UDA) were used as hydrophilic and hydrophobic surfaces, respectively. For templating the HD- and UDA-SAMs, the VUV light was exposed to HD- and UDA-SAMs from the slits of photomasks in atmospheric and evacuated environments, respectively.

View Article and Find Full Text PDF

Formation of precise and high-resolution silica micropatterns on polymer substrates is of importance in surface structuring for flexible device fabrication of optics, microelectronic, and biotechnology. To achieve that, substrates modified with affinity-patterns serve as a strategy for site-selective deposition. In the present paper, vacuum ultraviolet (VUV) treatment is utilized to achieve spatially-controlled surface functionalization on a cyclo-olefin polymer (COP) substrate.

View Article and Find Full Text PDF

This work describes the UV alkoxylation of a series of 1,2-epoxyalkanes on the hydrogen-terminated silicon (H-Si) substrate. The formation of alkoxy self-assembled monolayers (SAMs) and the nature of bonding at the surface of H-Si were examined using water contact angle goniometer, spectroscopic ellipsometer, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy. UV exposure to 1,2-epoxyalkane mesitylene solution for 60 min formed alkoxy-SAMs onto H-Si with hydrophobic properties.

View Article and Find Full Text PDF

We have prepared COOH- and COOCH-terminated self-assembled monolayers (SAMs) from undec-10-enoic acid (UDA) and methyl undec-10-enoate (MUDO) molecules on hydrogen-terminated silicon (H-Si) substrates through ultraviolet (UV) irradiation. The as-prepared UDA- and MUDO-SAMs were exposed to 172 nm vacuum-UV (VUV) light in a high vacuum environment (HV, <10 Pa) for different periods. The presence of COO components at the surfaces of these SAMs without prior oxidation would simplify the understanding of the origin of the chemical conversions and the changes of surface properties, as the prior oxidation would change the surface properties and generate different oxygenated groups.

View Article and Find Full Text PDF

Through 172 nm vacuum ultraviolet light irradiation in a high vacuum condition (HV-VUV), well-defined micropatterns with a varied periodic friction were fabricated at the surface of self-assembled monolayers (SAMs) terminated with oxygenated groups. No apparent height contrast between the HV-VUV-irradiated and -masked areas was observed, which indicated the stability of the C-C skeleton of the assembled molecules. The trimming of oxygenated groups occurred through dissociating the C-O bonds and promoting the occurrence of α- and β-cleavages in the C═O-containing components.

View Article and Find Full Text PDF

Correction for 'Chemical conversion of self-assembled hexadecyl monolayers with active oxygen species generated by vacuum ultraviolet irradiation in an atmospheric environment' by Ahmed I. A. Soliman et al.

View Article and Find Full Text PDF

Vacuum ultraviolet (VUV, λ = 172 nm) irradiation of alkyl self-assembled monolayers (SAMs) in the presence of dry air alters their surface properties. In this work, UV photochemically prepared hexadecyl (HD)-SAMs on hydrogen-terminated silicon substrates were irradiated by VUV light in dry air, which generated active oxygen species upon excitation of the atmospheric oxygen molecules. These active oxygen species converted the terminal methyl groups of the SAMs to polar functional groups, which were examined quantitatively by X-ray photoelectron spectroscopy (XPS) and chemical labeling.

View Article and Find Full Text PDF