Theoretical prediction of interfacial capacitance in graphene-based supercapacitors is crucial to accelerating materials' design and development cycles. However, there is currently a significant gap between ab initio predictions and experimental reports, particularly in the case of nitrogen-doped graphene. Analyses based on changes to the density of states of freestanding graphene upon doping do not account for the electronic interactions between the electrode, dopants, and substrates.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2022
Photovoltaic (PV) panels are one of the most important solar energy sources used to convert the sun's radiation falling on them into electrical power directly. Many factors affect the functioning of photovoltaic panels, including external factors and internal factors. External factors such as wind speed, incident radiation rate, ambient temperature, and dust accumulation on the PV cannot be controlled.
View Article and Find Full Text PDFThe interactions of H2O and H2S monomers with Cu(111) in the absence and presence of an external electric field are studied using density functional theory. It is found that the adsorption is accompanied by a rippled pattern of the surface Cu atoms and electron accumulation on the surface Cu atoms surrounding the adsorption site. The response of the H2O/Cu(111) and H2S/Cu(111) interfaces to the external electric field is computed up to the field magnitude of 10(10) V m(-1).
View Article and Find Full Text PDF