Many antibiotic-resistant bacteria carry resistance genes on conjugative plasmids that are transferable to commensals and pathogens. We determined the ability of multiple enteric bacteria to acquire and retransfer a broad-host-range plasmid RP4. We used human-derived commensal LM715-1 carrying a chromosomal red fluorescent protein gene and green fluorescent protein (GFP)-labeled broad-host-range RP4 plasmid with R, R, and R in in vitro matings to rifampicin-resistant recipients, including MG1655, Dec5α, , , , , , and Typhimurium.
View Article and Find Full Text PDFHemoglobin (Hb) encapsulation inside polysaccharide hydrogels has been considered a possible red blood cell (RBC) surrogate in transfusiology. Here we report on the microfluidic dual picoinjection assisted synthesis of Hb encapsulated alginate-poly(L-lysine)--poly(ethylene glycol) beads. This process is realized by the on-chip injections of blended Hb alginate solutions in emulsified aqueous calcium chloride (CaCl) droplets followed by a subsequent injection of an aqueous PLL--PEG into each emulsified aqueous droplet.
View Article and Find Full Text PDFcauses foodborne gastroenteritis and may trigger acute autoimmune sequelae including Guillain Barré Syndrome. Onset of neuromuscular paralysis is associated with exposure to lipooligosaccharide (LOS) classes A, B, C, D, and E that mimic and evoke antibodies against gangliosides on myelin and axons of peripheral nerves. Family members managing a Michigan dairy operation reported recurring gastroenteritis.
View Article and Find Full Text PDFAqueous microgels are distinct entities of soft matter with mechanical signatures that can be different from their macroscopic counterparts due to confinement effects in the preparation, inherently made to consist of more than one domain (Janus particles) or further processing by coating and change in the extent of crosslinking of the core. Motivated by the importance of the mechanical properties of such microgels from a fundamental point, but also related to numerous applications, we provide a perspective on the experimental strategies currently available and emerging tools being explored. Albeit all techniques in principle exploit enforcing stress and observing strain, the realization differs from directly, as, e.
View Article and Find Full Text PDFMicron-sized alginate hydrogel beads are extensively employed as an encapsulation medium for biochemical and biomedical applications. Here we report on the microfluidic assisted fabrication of calcium alginate (Ca-alginate) beads by on-chip picoinjection of aqueous calcium chloride (CaCl2) in emulsified aqueous sodium alginate (Na-alginate) droplets or by picoinjection of Na-alginate solution in emulsified aqueous CaCl2 droplets. There is no added chelator to reduce the Ca activity in either of the two strategies.
View Article and Find Full Text PDFWe present an acoustofluidic method based on travelling surface acoustic waves (TSAWs) to induce self-assembly of microparticles inside a microfluidic channel. The particles are trapped above an interdigitated transducer, placed directly beneath the microchannel, by the TSAW-based direct acoustic radiation force (ARF). This approach was applied to trap 10 μm polystyrene particles, which were pushed towards the ceiling of the microchannel by 72 MHz TSAWs to form single- and multiple-layer colloidal structures.
View Article and Find Full Text PDFSheathless focusing and separation of microparticles is an important preprocessing step in various biochemical assays in which enriched sample isolation is critical. Most of the previous microfluidic particle separation techniques have used sheath flows to achieve efficient sample focusing. The sheath flow dilutes the analyte and requires additional microchannels and accurate flow control.
View Article and Find Full Text PDFA particle suspended in a fluid within a microfluidic channel experiences a direct acoustic radiation force (ARF) when traveling surface acoustic waves (TSAWs) couple with the fluid at the Rayleigh angle, thus producing two components of the ARF. Most SAW-based microfluidic devices rely on the horizontal component of the ARF to migrate prefocused particles laterally across a microchannel width. Although the magnitude of the vertical component of the ARF is more than twice the magnitude of the horizontal component, it is long ignored due to polydimethylsiloxane (PDMS) microchannel fabrication limitations and difficulties in particle focusing along the vertical direction.
View Article and Find Full Text PDFA variety of techniques have been developed as diagnostic tools for the differential diagnosis of tumours produced by Marek's disease virus from those induced by avian leukosis virus and reticuloendotheliosis virus. However, most current techniques are unreliable when used in formalin-fixed paraffin-embedded (FFPE) tissues, which often is the only sample type available for definitive diagnosis. A collection of tumours was generated by the inoculation of different strains of Marek's disease virus, reticuloendotheliosis virus or avian leukosis virus singularly or in combination.
View Article and Find Full Text PDFWe propose an acoustic flow switching device that utilizes high-frequency surface acoustic waves (SAWs) produced by a slanted-finger interdigitated transducer. As the acoustic field induced by the SAWs was attenuated in the fluid, it produced an acoustic streaming flow in the form of a pair of symmetrical microvortices, which induced flow switching between two fluid streams in a controlled manner. The microfluidic device was composed of a piezoelectric substrate attached to a polydimethylsiloxane (PDMS) microchannel having an H-shaped junction that connected two fluid streams in the middle.
View Article and Find Full Text PDFBiomicrofluidics
November 2017
Droplets in microfluidic systems can contain microscale objects such as cells and microparticles. The control of the positions of microscale objects within a microchannel is crucial for practical applications in not only continuous-flow-based but also droplet-based systems. This paper proposes an active method for the separation of microparticles inside moving droplets which uses travelling surface acoustic waves (TSAWs).
View Article and Find Full Text PDFOn-chip droplet splitting is one of the fundamental droplet-based microfluidic unit operations to control droplet volume after production and increase operational capability, flexibility, and throughput. Various droplet splitting methods have been proposed, and among them the acoustic droplet splitting method is promising because of its label-free operation without any physical or thermal damage to droplets. Previous acoustic droplet splitting methods faced several limitations: first, they employed a cross-type acoustofluidic device that precluded multichannel droplet splitting; second, they required irreversible bonding between a piezoelectric substrate and a microfluidic chip, such that the fluidic chip was not replaceable.
View Article and Find Full Text PDFWe have designed a pumpless acoustofluidic device for the concentration and separation of different sized particles inside a single-layered straight polydimethylsiloxane (PDMS) microfluidic channel. The proposed device comprises two parallel interdigitated transducers (IDTs) positioned underneath the PDMS microchannel. The IDTs produce high-frequency surface acoustic waves that generate semipermeable virtual acoustic radiation force field walls that selectively trap and concentrate larger particles at different locations inside the microchannel and allow the smaller particles to pass through the acoustic filter.
View Article and Find Full Text PDFWe developed a hybrid microfluidic device that utilized acoustic waves to drive functionalized microparticles inside a continuous flow microchannel and to separate particle-conjugated target proteins from a complex fluid. The acoustofluidic device is composed of an interdigitated transducer that produces high-frequency surface acoustic waves (SAW) and a polydimethylsiloxane (PDMS) microfluidic channel. The SAW interacted with the sample fluid inside the microchannel and deflected particles from their original streamlines to achieve separation.
View Article and Find Full Text PDFPrecise control over droplet position within a microchannel is fundamental to droplet microfluidic applications. This article proposes acoustothermal tweezer for the control of droplet position, which is based on thermocapillary droplet migration actuated by acoustothermal heating. The proposed system comprises an acoustothermal heater, which is composed of a slanted finger interdigital transducer patterned on a piezoelectric substrate and a thin PDMS membrane, and a PDMS microchannel.
View Article and Find Full Text PDFWe demonstrate an acoustofluidic platform that uses surface acoustic waves (SAWs) for the facile capture of droplets inside microwells and their on-demand release. When the ac signal applied to the device is tuned to modulate the location of the SAW, the SAW-based acoustic radiation force retracts or pushes the droplets into or out of one of three microwells fabricated inside a microchannel to selectively capture or release the droplet.
View Article and Find Full Text PDFA sessile droplet of water carrying polystyrene microparticles of different diameters was uniformly exposed to high frequency surface acoustic waves (SAWs) produced by an interdigitated transducer (IDT). We investigated the concentration behavior of the microparticles as the SAWs generated a strong acoustic streaming flow (ASF) inside the water droplet and exerted a direct acoustic radiation force (ARF) on the suspended particles, the magnitude of which depended upon the particle diameter. As a result of the ARF, the microparticles were concentrated according to their diameters at different positions inside the sessile droplet placed in the path of the SAW, right in front of the IDT.
View Article and Find Full Text PDFBecause of the high toxicity of chromium, particularly as Cr (VI), it is removed from industrial effluents before their discharge into water bodies by a variety of techniques, including adsorption. Ultimate disposal of the sludge or the adsorbate, however, is a serious problem. While titania, in nanoparticle form, serves as a very good adsorbent for chromium, as an additive, it also helps to increase the compressive strength of mortar and concrete.
View Article and Find Full Text PDF