Conventional channel-based microfluidic platforms have gained prominence in controlling the bottom-up formation of phospholipid based nanostructures including liposomes. However, there are challenges in the production of liposomes from rapidly scalable processes. These have been overcome using a vortex fluidic device (VFD), which is a thin film microfluidic platform rather than channel-based, affording ∼110 nm diameter liposomes.
View Article and Find Full Text PDFWe have developed a simple process for the entrapment of nutrients in shear stress induced non-covalent physically entangled tannic acid-gelatin gel in a thin film vortex fluidic device (VFD) operating under continuous flow. This allows control of the porosity and surface area of the pores in order to improve the nutrient entrapment capacity. The VFD microfluidic platform simplifies the processing procedure of physically entangled biopolymers, as a time and cost saving one-step process devoid of any organic solvents, in contrast to the conventional homogenization process, which is also inherently complex, involving multiple-step processing.
View Article and Find Full Text PDFA method has been developed to slice boron nitride nanotubes BNNTs under continuous flow in a vortex fluidic device (VFD), along with a method to partially purify the as received BNNT containing material. The latter involves heating the BNNTs to 600 °C followed by dispersing in a 1 : 3 isopropyl alcohol (IPA) and water mixture at 100 °C. The VFD mediated slicing of the BNNTs comprises irradiating the rapidly rotating glass tube (20 mm OD) with a pulsed Nd:YAG laser.
View Article and Find Full Text PDFCopper(I) oxide (CuO) nanoparticles (NPs) are selectively prepared in high yields under continuous flow in a vortex fluidic device (VFD), involving irradiation of a copper rod using a pulsed laser operating at 1064 nm and 600 mJ. The plasma plume generated inside a glass tube (20 mm O.D.
View Article and Find Full Text PDFSelective formation of only one iron oxide phase is a major challenge in conventional laser ablation process, as is scaling up the process. Herein, superparamagnetic single-phase magnetite nanoparticles of hexagonal and spheroidal-shape, with an average size of ca. 15 nm, are generated by laser ablation of bulk iron metal at 1064 nm in a vortex fluidic device (VFD).
View Article and Find Full Text PDFComposites of multi-walled carbon nanotubes (MWCNTs) and superparamagnetic magnetite nanoparticles, FeO@MWCNT, were synthesized in DMF in a vortex fluidic device (VFD). This involved generation of the iron oxide nanoparticles by laser ablation of bulk iron metal at 1064 nm using a pulsed laser, over the dynamic thin film in the microfluidic platform. The overall processing is a three-step in one operation: (i) slicing MWCNTs, (ii) generating the superparamagnetic nanoparticles and (iii) decorating them on the surface of the MWCNTs.
View Article and Find Full Text PDFExfoliation or scrolling of hexagonal boron nitride (h-BN) occurs in a vortex fluidic device (VFD) operating under continuous flow, with a tilt angle of -45° relative to the horizontal position. This new VFD processing strategy is effective in avoiding the build-up of material that occurs when the device is operated using the conventional tilt angle of +45°, where the h-BN precursor and scrolls are centrifugally held against the wall of the tube. At a tilt angle of -45° the downward flow aided by gravity facilitates material exiting the tube with the exfoliation of h-BN and formation of h-BN scrolls then optimized by systematically varying the other VFD operating parameters, including flow rate and rotational speed, along with concentration of h-BN and the choice of solvent.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2018
Macroporous bovine serum albumin (BSA) nanoparticles with controllable diameter were readily fabricated in a rapidly rotating angled glass tube in a vortex fluidic device (VFD). Systematically varying the rotational speed and the ratio of BSA, ethanol, and glutaraldehyde led to conditions for generating ca. 600 nm diameter macroporous particles that have intrinsic fluorescence emission at 520 nm when excited at 490 nm.
View Article and Find Full Text PDF