Transfer learning (TL) has been widely utilized to address the lack of training data for deep learning models. Specifically, one of the most popular uses of TL has been for the pre-trained models of the ImageNet dataset. Nevertheless, although these pre-trained models have shown an effective performance in several domains of application, those models may not offer significant benefits in all instances when dealing with medical imaging scenarios.
View Article and Find Full Text PDFThe importance of automating the diagnosis of Alzheimer disease (AD) towards facilitating its early prediction has long been emphasized, hampered in part by lack of empirical support. Given the evident association of AD with age and the increasing aging population owing to the general well-being of individuals, there have been unprecedented estimated economic complications. Consequently, many recent studies have attempted to employ the language deficiency caused by cognitive decline in automating the diagnostic task via training machine learning (ML) algorithms with linguistic patterns and deficits.
View Article and Find Full Text PDF