SUMMARY MHI is a common disorder in t he pediatric population. While most children recover uneventfully, a small percentage has persistence of symptoms and long-term sequelae. Determining the optimal timing for return to play can be difficult, but adherence to guidelines may reduce the risk of compounding the injury.
View Article and Find Full Text PDFMagnesium is a non-competitive antagonist of the NMDA receptor. Hypoxic insults to the brain are associated with a significant increase in the intranuclear Ca(2+) due to altered nuclear membrane Ca(2+) influx mechanisms including hypoxia-induced modifications of nuclear membrane IP(3) receptors. In this study we have examined the effects of magnesium sulfate administration to newborn piglets subjected to normoxia and severe hypoxia.
View Article and Find Full Text PDFThe present study tested the hypothesis that magnesium sulfate administration prior to hypoxia prevents hypoxia-induced increase in Ca(2+)/Calmodulin-dependent-kinase (CaM Kinase) IV and Protein Tyrosine Kinase (PTK ) activities. Animals were randomly divided into normoxic (Nx), hypoxic (Hx) and magnesium-pretreated hypoxic (Mg(2+)-Hx) groups. Cerebral hypoxia was confirmed biochemically by measuring ATP and phosphocreatine (PCr) levels.
View Article and Find Full Text PDF