Publications by authors named "Ahmed Fatmi"

Background: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. It affects multiple organ systems and is associated with significant morbidity and mortality. The treatment for SLE primarily aims at controlling and remitting the disease.

View Article and Find Full Text PDF

We previously linked TSHZ3 haploinsufficiency to autism spectrum disorder (ASD) and showed that embryonic or postnatal Tshz3 deletion in mice results in behavioral traits relevant to the two core domains of ASD, namely social interaction deficits and repetitive behaviors. Here, we provide evidence that cortical projection neurons (CPNs) and striatal cholinergic interneurons (SCINs) are two main and complementary players in the TSHZ3-linked ASD syndrome. In the cerebral cortex, TSHZ3 is expressed in CPNs and in a proportion of GABAergic interneurons, but not in cholinergic interneurons or glial cells.

View Article and Find Full Text PDF

Renal tract defects and autism spectrum disorder (ASD) deficits represent the phenotypic core of the 19q12 deletion syndrome caused by the loss of one copy of the TSHZ3 gene. Although a proportion of Tshz3 heterozygous (Tshz3+/lacZ) mice display ureteral defects, no kidney defects have been reported in these mice. The purpose of this study was to characterize the expression of Tshz3 in adult kidney as well as the renal consequences of embryonic haploinsufficiency of Tshz3 by analyzing the morphology and function of Tshz3 heterozygous adult kidney.

View Article and Find Full Text PDF

mice have been widely used to study the postnatal function of several genes in forebrain projection neurons, including cortical projection neurons (CPNs) and striatal medium-sized spiny neurons (MSNs). We linked heterozygous deletion of gene to autism spectrum disorder (ASD) and used mice to investigate the postnatal function of , which is expressed by CPNs but not MSNs. Recently, single-cell transcriptomics of the adult mouse striatum revealed the expression of in interneurons and showed expression in striatal cholinergic interneurons (SCINs), which are attracting increasing interest in the field of ASD.

View Article and Find Full Text PDF

Background: Heterozygous deletion of the TSHZ3 gene, encoding for the teashirt zinc-finger homeobox family member 3 (TSHZ3) transcription factor that is highly expressed in cortical projection neurons (CPNs), has been linked to an autism spectrum disorder (ASD) syndrome. Similarly, mice with Tshz3 haploinsufficiency show ASD-like behavior, paralleled by molecular changes in CPNs and corticostriatal synaptic dysfunctions. Here, we aimed at gaining more insight into "when" and "where" TSHZ3 is required for the proper development of the brain, and its deficiency crucial for developing this ASD syndrome.

View Article and Find Full Text PDF

TSHZ3, which encodes a zinc-finger transcription factor, was recently positioned as a hub gene in a module of the genes with the highest expression in the developing human neocortex, but its functions remained unknown. Here we identify TSHZ3 as the critical region for a syndrome associated with heterozygous deletions at 19q12-q13.11, which includes autism spectrum disorder (ASD).

View Article and Find Full Text PDF

Smooth muscle cells are of key importance for the proper functioning of different visceral organs including those of the urogenital system. In the mouse ureter, the two transcriptional regulators TSHZ3 and SOX9 are independently required for initiation of smooth muscle differentiation from uncommitted mesenchymal precursor cells. However, it has remained unclear whether TSHZ3 and SOX9 act independently or as part of a larger regulatory network.

View Article and Find Full Text PDF

Mitochondria are highly dynamic organelles that can change in number and morphology during cell cycle, development or in response to extracellular stimuli. These morphological dynamics are controlled by a tight balance between two antagonistic pathways that promote fusion and fission. Genetic approaches have identified a cohort of conserved proteins that form the core of mitochondrial remodelling machineries.

View Article and Find Full Text PDF

The human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) has evolved to limit its overall immunogenicity by extensive glycosylation. Only a few studies dealing with glycosylation sites have taken into account available 3D data in a global approach. We compared primary env sequences from patients with acute HIV-1 infection.

View Article and Find Full Text PDF

The existence of extrahepatic sites of hepatitis C virus (HCV) replication has been proposed as a mechanism responsible for the poor antiviral immune response found in chronic infection. Dendritic cells (DCs), as unique antigen-presenting cells able to induce a primary immune response, are prime targets of persistent viruses. From 24 blood samples obtained from HCV-seropositive patients, peripheral blood DCs (PBDCs) were purified.

View Article and Find Full Text PDF