Publications by authors named "Ahmed Elazzazy"

Waste cooking oil is a common byproduct in the culinary industry, often posing disposal challenges. This study explores its conversion into the valuable bioplastic material, medium-chain-length polyhydroxyalkanoate (mcl-PHA), through microbial biosynthesis in controlled bioreactor conditions. Twenty-four bacterial isolates were obtained from oil-contaminated soil and waste materials in Mahd Ad-Dahab, Saudi Arabia.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant microorganisms poses a significant threat to human health worldwide. Recent advances have led to the discovery of molecules with potent antimicrobial activity from environmental sources. In this study, fifteen bacterial isolates were obtained from agricultural and polluted soil samples collected from different areas of the cities of Jizan and Jeddah.

View Article and Find Full Text PDF

Quorum sensing inhibitor (QSI) has been attracting attention as anti-virulence agent which disarms pathogens of their virulence rather than killing them. QSI marking cyclic peptide-mediated QS in Gram-positive bacteria is an effective tool to overcome the crisis of antibiotic-dependent chemotherapy due to the emergence of drug resistance strain, e.g.

View Article and Find Full Text PDF

Drought negatively affects crop growth and development, so it is crucial to develop practical ways to reduce these consequences of water scarcity. The effect of the interactive potential of compost (Comp), mycorrhizal fungi (AMF), and carbon nanoparticles (CNPS) on plant growth, photosynthesis rate, primary metabolism, and secondary metabolism was studied as a novel approach to mitigating drought stress in maize plants. Drought stress significantly reduced maize growth and photosynthesis and altered metabolism.

View Article and Find Full Text PDF

Drought is an important threat worldwide, therefore, it is vital to create workable solutions to mitigate the negative effects of drought stress. To this end, we investigated the interactive effect of compost (Comp), arbuscular mycorrhizal fungi (AMF) and carbon nanoparticles (CNPs) on maize plant crops under drought stress. The combined treatments were more effective at increasing soil fertility and promoting the growth of maize plants under both control and drought stress conditions by 20.

View Article and Find Full Text PDF

This study aims to synthesize silver nanoparticles by the green method and test it against specific virulence factors in multi-drug resistant Enterococcus faecalis bacteria. virulence factors of E. faecalis clinical isolates were determined and the most potent isolate was selected for further investigations.

View Article and Find Full Text PDF

Co-inoculation with beneficial microbes has been suggested as a useful practice for the enhancement of plant growth, nutrient uptake, and soil nutrients. For the first time in Uzbekistan the role of plant-growth-promoting IGPEB 33 and arbuscular mycorrhizal fungi (AMF) on plant growth, the physiological properties of ginger (), and soil enzymatic activities was studied. Moreover, the coinoculation of IGPEB 33 and AMF treatment significantly increased the plant height by 81%, leaf number by 70%, leaf length by 82%, and leaf width by 40% compared to the control.

View Article and Find Full Text PDF

With more than 17 clinically approved Drugs and over 20 prodrugs under clinical investigations, marine bacteria are believed to have a potential supply of innovative therapeutic bioactive compounds. In the current study, sp. strain AG5 isolated from the Red Sea was identified and characterized by biochemical and physiological analysis, and examination of a phylogenetic 16S rRNA sequences.

View Article and Find Full Text PDF

, a Gram -ve, rod-shaped, and opportunistic bacteria isolated from the urine, feces, and skin of humans engage in a wide range of infectious diseases such as urinary tract infection (UTI), gastroenteritis, and bacteremia. This bacterium belongs to the Enterobacteriaceae family and can resist antibiotics known as multidrug-resistant (MDR), and as such can be life-threatening to humans. After retrieving the whole proteomic sequence of ATCC 35613, a total of 6 non-homologous and pathogenic proteins were separated.

View Article and Find Full Text PDF

Fatty acid amides (FAAs) are of great interest due to their broad industrial applications. They can be synthesized enzymatically with many advantages over chemical synthesis. In this study, the fatty acid moieties of lipids of Cunninghamella echinulata ATHUM 4411, Umbelopsis isabellina ATHUM 2935, Nannochloropsis gaditana CCAP 849/5, olive oil, and an eicosapentaenoic acid (EPA) concentrate were converted into their fatty acid methyl esters and used in the FAA (i.

View Article and Find Full Text PDF

Aquaculture plays an important role in human nutrition and economic development but is often expanded to the detriment of the natural environment. Several research projects, aimed at cultivating microalgae in aquaculture wastewaters (AWWs) to reduce organic loads and minerals, along with the production of microalgal cell mass and metabolic products, are underway. Microalgal cell mass is of high nutritional value and is regarded as a candidate to replace, partially at least, the fish meal in the fish feed.

View Article and Find Full Text PDF

The discovery of non-fish sources of polyunsaturated fatty acids (PUFAs) is of great biotechnological importance. Although various oleaginous microalgae and fungi are able of accumulating storage lipids (single cell oils - SCOs) containing PUFAs, the industrial applications utilizing these organisms are rather limited due to the high-fermentation cost. However, combining SCO production with other biotechnological applications, including waste and by-product valorization, can overcome this difficulty.

View Article and Find Full Text PDF

This study evaluates the potential application of silver nanoparticles (AgNPs) as antimicrobial or nematicidal agents produced by the extremophile , which was isolated from the alkaline Wadi El-Natrun Lake in Egypt. The AgNPs were characterized by ultraviolet-visible absorption spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. The size of AgNPs formed ranged from 20.

View Article and Find Full Text PDF

This study was performed to identify the expression patterns of the cathelicidin genes in a local chicken breed and to evaluate the antimicrobial activities of the cathelicidin peptides against pathogenic bacteria. This analysis revealed that the coding regions of CATH-1, -2, and -3 genes contain 447 bp, 465 bp, and 456 bp, respectively, and encode proteins of 148, 154, 151 amino acids, respectively. The complete amino acid sequences of the cathelicidin peptides are similar to those found in Meleagris gallopavo, Phasianus colchicus, and Coturnix coturnix, and show high sequence identity to their Columba livia and Anas platyrhynchos counterparts.

View Article and Find Full Text PDF

In this study we identified the expression patterns of β-defensin-9 in chickens from Saudi Arabia, evaluated the antimicrobial activities of synthetic chicken β-defensin-9 (sAvBD-9) against pathogenic bacteria and fungi, and investigated the mode of action of sAvBD-9 on bacterial cells. The AvBD-9 gene of Saudi chickens encodes a polypeptide of 67 amino acids, which is highly similar to the polypeptide in duck, quail, and goose (97%, 86%, and 87%, respectively) and shares a low sequence similarity with the mammalian defensins. AvBD-9 is expressed in various organs and tissues of Saudi chickens and inhibits the growth of both Gram-negative and Gram-positive bacteria, as well as showing activity against unicellular and multicellular fungi (Aspergillus flavus, A.

View Article and Find Full Text PDF

In this short review, we summarize the latest research in the production of polyunsaturated microbial oils that are of interest in food technology. The current research targets the productivity of oleaginous microorganisms, as well as the biosynthesis of particular polyunsaturated fatty acids (PUFAs). The most important efforts target the efficiency of the oleaginous machinery, via overexpression of key-enzymes involved in lipid biosynthesis, as well as the minimization of lipid degradation, by repressing genes involved in the β-oxidation pathway.

View Article and Find Full Text PDF

Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment.

View Article and Find Full Text PDF

Extracellular agents produced by newly isolated bacterial strains were able to catalyze the synthesis of silver nanoparticles (AgNPs). The most effective isolates were identified as Bacillus pumilus, B. persicus, and Bacillus licheniformis using molecular identification.

View Article and Find Full Text PDF

Host Defense Peptides (HDPs) are small cationic peptides found in several organisms. They play a vital role in innate immunity response and immunomodulatory stimulation. This investigation was designed to study the antimicrobial activities of β-defensin peptide-4 (sAvBD-4) and 10 (sAvBD-4) derived from chickens against pathogenic organisms including bacteria and fungi.

View Article and Find Full Text PDF

In the last few years, there has been an intense interest in using microalgal lipids in food, chemical and pharmaceutical industries and cosmetology, while a noteworthy research has been performed focusing on all aspects of microalgal lipid production. This includes basic research on the pathways of solar energy conversion and on lipid biosynthesis and catabolism, and applied research dealing with the various biological and technical bottlenecks of the lipid production process. In here, we review the current knowledge in microalgal lipids with respect to their metabolism and various biotechnological applications, and we discuss potential future perspectives.

View Article and Find Full Text PDF