Publications by authors named "Ahmed ElDyasti"

Nowadays, the shift toward energy and resource-efficient wastewater treatment plants (WWTPs) has become a necessity rather than a choice. For this purpose, there has been a restored interest in replacing the typical energy and resource-extensive activated sludge process with the two-stage Adsorption/bio-oxidation (A/B) configuration. In the A/B configuration, the role of the A-stage process is to maximize organics diversion to the solids stream and control the following B-stage's influent to allow for the attainment of tangible energy savings.

View Article and Find Full Text PDF

The interest in the A-stage of the adsorption/bio-oxidation (A/B) process has considerably increased due to its capacity of carbon redirection to the solids stream. Induced by its flexible and compact design, the Alternating Activated Adsorption (AAA) was recently implemented in full-scale as an alternative A-stage system. However, the literature on such a system is scarce.

View Article and Find Full Text PDF

Biological nutrient removal grows into complicated scenario due to the microbial consortium shift and kinetic competition between phosphorus (P)-accumulating and nitrogen (N)-removing microorganisms. In this study, three sequential batch reactors with constant operational conditions except aeration patterns at 6 h cycle periods were tested. Intermittent aeration was applied to develop a robust nutrient removal system aimed to achieve high energy saving and removal efficiency.

View Article and Find Full Text PDF

Wastewater treatment plants and other remediation facilities serve important roles, both in public health, but also as dynamic research platforms for acquiring useful resources and biomolecules for various applications. An example of this is methanotrophic bacteria within anaerobic digestion processes in wastewater treatment plants. These bacteria are an important microbial source of many products including ectoine, polyhydroxyalkanoates, and methanobactins, which are invaluable to the fields of biotechnology and biomedicine.

View Article and Find Full Text PDF

Recent research has shown the adaptability of Biological Nutrient Removal (BNR) systems to very low level dissolved oxygen (DO) concentration, mainly focusing in the nitrification ability that maintains the nitrogen oxidation process even at very low DO levels. Although step-wise aeration decrease on Enhanced Biological Phosphorus Removal (EBPR) is not fully comprehended. This study investigated the effect of reaching micro-aeration with adaptation strategies on EBPR performance.

View Article and Find Full Text PDF

Three different innovative mathematical models were established to assess the volumetric nitrogen conversion rates of a lab-scale ANAMMOX upflow anaerobic sludge blanket reactor. Despite the vast technological and economical advantages of ANAMMOX, major challenges in process implementation call for mathematic simulations of the process, optimization of operating conditions, and kinetic/statistical analysis of the entire process. In this study, all developed mathematical models implemented via BioWin®, were calibrated and validated, with adequate representations of a bench-scale micro-granular ANAMMOX process, to understand the potential setbacks of ANAMMOX process start-up and stabilization.

View Article and Find Full Text PDF

With the adverse environmental ramifications of the use of petroleum-based plastic outweighing the challenges facing the industrialization of bioplastics, polyhydroxyalkanoate (PHA) biopolymer has gained broad interest in recent years. Thus, an efficient approach for maximizing polyhydroxybutyrate (PHB) polymer production in methanotrophic bacteria has been developed using the methane gas produced in the anaerobic digestion process in wastewater treatment plants (WWTPS) as a carbon substrate and an electron donor. A comparison study was conducted between two experimental setups using two different recycling strategies, namely new and conventional setups.

View Article and Find Full Text PDF

Methanotrophic biotechnologies for methane mitigation and nitrogen removal are becoming more apparent. However, the sludge produced during these processes is often underutilized and instead can be applied for resources recovery. Fortunately, methanotrophic bacteria can utilize methane while also producing poly-hydroxy-butyrate (PHB), bioplastics, under nutrients deficient conditions.

View Article and Find Full Text PDF

Within wastewater treatment plants (WWTPs), the anaerobically produced biogas is often underutilized. Fortunately, methanotrophic based biotechnologies can be the remedy for on-site exploitation and recovery of unused biogas. In this regard, efforts have been placed on evaluating the suitably of methanotrophs to be deployed in WWTPs.

View Article and Find Full Text PDF

Enhanced biological phosphorus removal (EBPR) is one of the most promising technologies as an economical and environmentally sustainable technique for removal of phosphorus from wastewater (WW). However, with high capacity of EBPR, insufficient P-removal is a major yet common issue of many full-scale wastewater treatment plants (WWTP), due to misinterpreted environmental and microbial disturbance. By developing a rather extensive understanding on biochemical pathways and metabolic models governing the anaerobic and aerobic/anoxic processes; the optimal operational conditions, environmental changes and microbial population interaction are efficiently predicted.

View Article and Find Full Text PDF

Anaerobic ammonia oxidation (anammox) process has been proven to be a favorable and innovative process, for treatment of nitrogen-rich wastewater due to decreased oxygen and carbon requirements at very high nitrogen loading rates. Anammox process is mainly operated through biofilm or granular sludge structures, as for such slow-growing microorganisms, elevated settling velocity of granules allows for adequate biomass retention and lowered potential risk of washouts. Stability of granular sludge biomass is extremely critical, yet the formation mechanism is poorly understood.

View Article and Find Full Text PDF

Deammonification (partial nitritation-anammox) process is a favorable and innovative process, for treatment of nitrogen-rich wastewater due to decreased oxygen and carbon requirements at very high nitrogen loadings. The bacterial groups responsible for this process are anaerobic ammonium oxidation (anammox) bacteria in symbiosis with ammonium oxidizing bacteria (AOB) which have an active role in development of nitrogen removal biotechnology in wastewater. Development and operation of sidestream deammonification processes has augmented since the initial full-scale systems, yet there are several aspects which mandate additional investigation and deliberation by the practitioners, to reach the operating perspective, set for the facility.

View Article and Find Full Text PDF

Methanotrophs are of great interest due to their distinguish ability of recovering value-added commodities such as methanol and lipids while mitigating methane. The enhancement of methanotrophs cultivation process conditions is a pivotal step to develop a feasible methanotrophic bioreactor. In this study, multiple batch tests have been performed to evaluate the aqueous growth medium elements including nitrogen, copper, and biomass density and the gaseous headspace composition influence on methanotrophs activity and the associated microbial community.

View Article and Find Full Text PDF

The fundamental components required for scaling up the production of biogas-based biopolymers can be provided through a single process, that is, anaerobic digestion (AD). In this research, the possibility of enriching methane-utilizing mixed cultures from the AD process was explored as well as their capability to accumulate polyhydroxyalkanoates (PHAs). For almost 70 days of operation in a fed-batch cyclic mode, the specific growth rate was 0.

View Article and Find Full Text PDF

Methanotrophic based process can be the remedy to offset the wastewater treatment facilities increasing energy requirements due to methanotroph's unique ability to integrate methane assimilation with multiple biotechnological applications like biological nitrogen removal and methanol production. Regardless of the methanotrophic process end product, the challenge to maintain stable microbial growth in the methanotrophs cultivation bioreactor at higher cell densities is one of the major obstacles facing the process upscaling. Therefore, a series of consecutive batch tests were performed to attentively investigate the biomass density influence on type I methanotrophs bacterial growth.

View Article and Find Full Text PDF

Recently, partial nitrification has been adopted widely either for the nitrite shunt process or intermediate nitrite generation step for the Anammox process. However, partial nitrification has been hindered by the complexity of maintaining stable nitrite accumulation at high nitrogen loading rates (NLR) which affect the feasibility of the process for high nitrogen content wastewater. Thus, the operational data of a lab scale SBR performing complete partial nitrification as a first step of nitrite shunt process at NLRs of 0.

View Article and Find Full Text PDF

Shortcut biological nitrogen removal is a non-conventional way of removing nitrogen from wastewater using two processes either nitrite shunt or deammonification. In the nitrite shunt process, the ammonia oxidation step stops at the nitrite stage, which is known as partial nitrification, then nitrite is directly reduced to nitrogen gas. Effective partial nitrification could be achieved by accumulating Ammonia Oxidizing Bacteria (AOB) and inhibiting Nitrite Oxidizing Bacteria (NOB).

View Article and Find Full Text PDF

Nitrous oxide (N2O) is a significant anthropogenic greenhouse gas emitted from biological nutrient removal (BNR) processes. This study tries to get a deeper insight into N2O emissions from denitrifying fluidized bed bioreactors (DFBBRs) and its relationship to the biofilm thickness, diffusivity, and reaction rates. The DFBBR was operated at two different organic and nitrogen loading rates of 5.

View Article and Find Full Text PDF

Nitrous oxide (N2O) is a significant anthropogenic greenhouse gases (AnGHGs) emitted from biological nutrient removal (BNR) processes. In this study, N2O production from denitrifying fluidized bed bioreactors (DFBBR) was reduced using calcium (Ca2+) dosage. The DFBBRs were operated on a synthetic municipal wastewater at four different calcium concentrations ranging from the typical municipal wastewater Ca2+ concentration (60 mg Ca2+/L) to 240 mg Ca2+/L at two different COD/N ratios.

View Article and Find Full Text PDF

The influence of particles properties on biofilm structure, reactor performance, and energy consumption for denitrifying fluidized bed bioreactors (DFBBRs) using maxi-blast plastic (MX), multi-blast plastic (MB), natural zeolite (NZ), and lava rock (LR) was investigated. The work showed that the particles with sphericity of 0.9 (MB and NZ) maintained a fluffy protruding biofilm and achieved slightly higher nutrient removal efficiencies as compared to the particles with sphericity of 0.

View Article and Find Full Text PDF

Biofilm models are valuable tools for process engineers to simulate biological wastewater treatment. In order to enhance the use of biofilm models implemented in contemporary simulation software, model calibration is both necessary and helpful. The aim of this work was to develop a calibration protocol of the particulate biofilm model with a help of the sensitivity analysis of the most important parameters in the biofilm model implemented in BioWin® and verify the predictability of the calibration protocol.

View Article and Find Full Text PDF

Steady state operational data from a pilot scale circulating fluidized bed bioreactor (CFBBR) during biological treatment of landfill leachate, at empty bed contact times (EBCTs) of 0.49, and 0.41 d and volumetric nutrients loading rates of 2.

View Article and Find Full Text PDF

Biological treatment of landfill leachate is a concern due to toxicity, high ammonia, low biodegradable organic matter concentrations, and low carbon-to-nitrogen ratio. To study the reliability and commercial viability of leachate treatment using an integrated liquid-solid circulating fluidized bed bioreactor (LSCFB), a pilot-scale LSCFB was established at the Adelaide Pollution Control Plant, London, Ontario, Canada. Anoxic and aerobic columns were used to optimize carbon and nutrient removal capability from leachate using 600 microm lava rock with a total porosity of 61%, at empty bed contact times (EBCTs) of 0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsn0eg9rosouegptgo0vkrmce3hbcr4aa): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once