This study investigated the effect of a hemispherical friction stir welding (FSW) tool on the heat generation and mechanical properties of dissimilar butt welded AA5083 and AA7075 alloys. FSW was performed on the dissimilar aluminum alloys AA5083-H111 and AA7075-T6 using welding speeds of 25, 50, and 75 mm/min. The tool rotation rate was kept constant at 500 rpm.
View Article and Find Full Text PDFSelecting an economically suitable welding technique and optimizing welding parameters to obtain high joint quality is considered a challenge for expanding the 5xxx aluminum alloy series in various industrial applications. This work aims to investigate the effect of applying different welding techniques, tungsten inert gas (TIG) and metal inert gas (MIG), as fusion welding processes compared to friction stir welding (FSW), a solid-state joining process, on the joint performance of the produced 5 mm thick similar AA5083-H111 butt weldments at different welding conditions. Different methods were used to evaluate the quality of the produced joints, including visual inspection, radiographic testing (RT), and macrostructure evaluation, in addition to hardness and tensile tests.
View Article and Find Full Text PDFThe current work investigates the viability of utilizing a friction stir deposition (FSD) technique to fabricate continuous multilayer high-performance, metal-based nanoceramic composites. For this purpose, AA2011/nano AlO composites were successfully produced using AA2011 as a matrix in two temper conditions (i.e.
View Article and Find Full Text PDFBobbin tool friction stir welding (BT-FSW) is characterized by a fully penetrated pin and double-sided shoulder that promote symmetrical solid-state joints. However, control of the processing parameters to obtain defect-free thick lap joints is still difficult and needs more effort. In this study, the BT-FSW process was used to produce 10 mm AA1050-H14 similar lap joints.
View Article and Find Full Text PDF