Publications by authors named "Ahmed E Aboutaleb"

Bacterial pathogens residing in host macrophages in intracellular infections are hard to eradicate because traditional antibiotics do not readily enter the cells or get eliminated via efflux pumps. To overcome this challenge, we developed a new particle formulation with a size amenable to selective macrophage uptake, loaded with two antibacterial agents - pexiganan and silver (Ag) nanoparticles. Here, pexiganan was loaded in 600 nm poly(lactic-co-glycolic acid) (PLGA) particles (NP), and the particle surface was modified with an iron-tannic acid supramolecular complex (pTA) that help attach Ag nanoparticles.

View Article and Find Full Text PDF

The objective of the present study was to evaluate the potential of ternary system (comprised of famotidine, beta-cyclodextrin (beta-CyD) or its derivatives and a hydrophilic polymer) as an approach for enhancing the aqueous solubility and masking the bitter taste of famotidine. The aqueous solubility of famotidine increased in the presence of beta-CyDs, particularly sulfobutyl ether beta-CyD (SBE-beta-CyD), and it was further enhanced by the combination of SBE-beta-CyD and polyvinyl pyrrolidone (Povidone) K30. The solid binary (drug-beta-CyDs) and ternary (drug-beta-CyDs-Povidone K30) systems were prepared by the kneading and freeze-drying methods.

View Article and Find Full Text PDF

The objective of the present study was to evaluate the potential influence of carboxymethyl-beta-cyclodextrin (CM-beta-CyD) on the aqueous solubility, chemical stability and oral bioavailability of famotidine (FMT) as well as on its bitter taste. We examined the effect of the CM-beta-CyD on the acidic degradation of FMT compared with that for sulfobutyl-ether-beta-cyclodextrin (SBE-beta-CyD). The potential use of CM-beta-CyD for orally disintegrating tablets (ODTs) was evaluated in vitro and in vivo.

View Article and Find Full Text PDF