Publications by authors named "Ahmed Bakillah"

Type 2 diabetes mellitus (T2DM) and cancer share common risk factors including obesity, inflammation, hyperglycemia, and hyperinsulinemia. High insulin levels activate the PI3K/Akt/mTOR signaling pathway promoting cancer cell growth, survival, proliferation, metastasis, and anti-apoptosis. The inhibition of the PI3K/Akt/mTOR signaling pathway for cancer remains a promising therapy; however, drug resistance poses a major problem in clinical settings resulting in limited efficacy of agents; thus, combination treatments with therapeutic inhibitors may solve the resistance to such agents.

View Article and Find Full Text PDF

Background: SARS-Co-V2 infection can induce ER stress-associated activation of unfolded protein response (UPR) in host cells, which may contribute to the pathogenesis of COVID-19. To understand the complex interplay between SARS-Co-V2 infection and UPR signaling, we examined the effects of acute pre-existing ER stress on SARS-Co-V2 infectivity.

Methods: Huh-7 cells were treated with Tunicamycin (TUN) and Thapsigargin (THA) prior to SARS-CoV-2pp transduction (48 h p.

View Article and Find Full Text PDF

Glucosylceramide (GlcCer) synthesis by the enzyme glucosylceramide synthase (GCS) occurs on the cytosolic leaflet of the Golgi and is the first important step for the synthesis of complex glycosphingolipids (GSLs) that takes place inside the lumen. Apart from serving as a precursor for glycosylation, newly synthesized GlcCer is also transported to the plasma membrane and secreted onto HDL in the circulation. The mechanism by which GlcCer is transported to HDL remains unclear.

View Article and Find Full Text PDF

Plasma lipoproteins exist as several subpopulations with distinct particle number and size that are not fully reflected in the conventional lipid panel. In this study, we sought to quantify lipoprotein subpopulations in patients with type 2 diabetes mellitus (T2DM) to determine whether specific lipoprotein subpopulations are associated with insulin resistance and inflammation markers. The study included 57 patients with T2DM (age, 61.

View Article and Find Full Text PDF

Excess plasma lipid levels are a risk factor for various cardiometabolic disorders. Studies have shown that improving dyslipidemia lowers the progression of these disorders. In this study, we investigated the role of ATP-binding cassette transporter C10 (ABCC10) in regulating lipid metabolism.

View Article and Find Full Text PDF

Saturated free fatty acids (FFAs) such as palmitate in the circulation are known to cause endoplasmic reticulum (ER) stress and insulin resistance in peripheral tissues. In addition to protein kinase B (AKT) signaling, extracellular signal-regulated kinase (ERK) has been implicated in the development of insulin resistance. However, there are conflicting data regarding role of ERK signaling in ER stress-induced insulin resistance.

View Article and Find Full Text PDF

Lipid rafts in cell plasma membranes play a critical role in the life cycle of many viruses. However, the involvement of membrane cholesterol-rich lipid rafts in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into target cells is not well known. In this study, we investigated whether the presence of cholesterol-rich microdomains is required for the entry of SARS-CoV-2 into host cells.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is characterized by endothelial dysfunction, increased thrombogenicity, and inflammation. The soluble human F11 receptor (sF11R) and annexin A5 (ANXA5) play crucial roles in inflammatory thrombosis and atherosclerosis. We examined the relationship between circulating sF11R and ANXA5 and their impact on endothelial function.

View Article and Find Full Text PDF

Sphingolipids are biomolecules with diverse physiological functions in signaling as well as plasma membrane structure. They are associated with either cellular membranes or plasma lipoproteins and any changes in their levels may contribute to certain metabolic diseases. Sphingolipids are evenly distributed in lipoproteins and may be used as prognostic and diagnostic markers.

View Article and Find Full Text PDF

Intestinal and hepatic lipid metabolism plays an essential role in regulating plasma lipid levels. These lipids are mobilized on apolipoprotein B (apoB)-containing lipoproteins and their plasma homeostasis is maintained by balancing production and catabolism. Microsomal triglyceride transfer protein (MTP) which is expressed mainly in the intestine and liver plays an essential role in regulating the assembly and secretion of apoB-lipoproteins.

View Article and Find Full Text PDF

Higher levels of nitrated lipoproteins (NT-HDL and NT-LDL) were found in blood and atherosclerotic plaques of patients with coronary artery disease. We aimed to examine the relationship between plasma NT-HDL and NT-LDL and diabetic vascular dysfunction. The study included 125 African-American patients with T2DM.

View Article and Find Full Text PDF

The rapidly expanding field of bioactive lipids is exemplified by the many sphingolipids, which are structurally and functionally diverse molecules with significant physiologic functions. These sphingolipids are main constituents of cellular membranes and have been found associated with plasma lipoproteins, and their concentrations are altered in several metabolic disorders such as atherosclerosis, obesity, and diabetes. Understanding the mechanisms that regulate their biosynthesis and secretion may provide novel information that might be amenable to therapeutic targeting in the treatment of these diseases.

View Article and Find Full Text PDF

microRNAs (miRNAs) are a group of small non-coding RNA molecules known to regulate target genes at the post-transcriptional level. miRNAs are implicated in the regulation of multiple pathophysiological processes including dyslipidemia, a major risk factor for atherosclerosis. Emerging evidence suggests that miRNAs act as a novel class of epigenetic regulators of high-density lipoproteins cholesterol (HDL-C) from synthesis to clearance contributing remarkably to the pathogenesis of atherosclerosis.

View Article and Find Full Text PDF

The most important function of high density lipoprotein (HDL) is its ability to remove cholesterol from cells and tissues involved in the early stages of atherosclerosis back to the liver for excretion. The ATP-binding cassette transporters ABCA1 and ABCG1 are responsible for the major part of cholesterol efflux to HDL in macrophage foam cells. Thus, promoting the process of reverse cholesterol transport (RCT) by upregulating mainly ABCA1 remains one of the potential targets for the development of new therapeutic agents against atherosclerosis.

View Article and Find Full Text PDF
Article Synopsis
  • - This document serves as a correction to a previous article identified by the DOI: 10.1186/s12986-018-0251-5.
  • - The correction addresses specific errors or inaccuracies found in the original article to ensure accurate representation of the content.
  • - It is important for readers to refer to this correction to fully understand the changes made and the updated information provided.
View Article and Find Full Text PDF
Article Synopsis
  • Liver dysfunction is a major global issue, with vitamin D and other nutritional therapies playing crucial roles in research and treatment options.* -
  • Studies show a link between vitamin D levels and various cancers, indicating its importance in chronic liver disorder development and highlighting the need for adequate nutritional status.* -
  • Vitamin D analogs like Seocalcitol EB 1089 show potential in combating liver diseases and cancer due to their anti-inflammatory and immune-regulatory properties.*
View Article and Find Full Text PDF

Insights from preclinical and clinical studies have attempted to highlight the importance of modified lipoprotein particles in the pathogenesis of cardiovascular diseases (CVD). However, evidence is not conclusive. Since there is a relative dearth of clinical research in collecting useful information from traditional advanced lipoproteins testing, this present editorial introduces the aim of a special issue on modified lipoproteins as potential biomarkers for CVD.

View Article and Find Full Text PDF

Nutritional research in sickle cell disease has been the focus in recent times owing to not only specific nutritional deficiencies, but also the improvements associated with less painful episodes. Though hydroxyurea remains the drug of choice, certain adverse health effects on long term supplementation makes room for researches of different compounds. Macro and micro nutrient deficiencies, along with vitamins, play an important role in not only meeting the calorific needs, but also reducing clinical complications and growth abnormalities.

View Article and Find Full Text PDF

Background: Serum preβ1-high density lipoprotein (preβ1-HDL) was defined by two-dimensional non-denaturing linear gel electrophoresis and apolipoprotein A-I immuno-blotting. Serum preβ1-HDL seems to play an important role in reverse cholesterol transport, a well-known anti-atherosclerosis process. However, there are still debatable questions for its quantification and coronary artery disease (CAD) relevance.

View Article and Find Full Text PDF

Background: Microsomal triglyceride transfer protein (MTP) is essential for the assembly of lipoproteins. MTP has been shown on the surface of lipid droplets of adipocytes; however its function in adipose tissue is not well defined. We hypothesized that MTP may play critical role in adipose lipid droplet formation and expansion.

View Article and Find Full Text PDF

Aims/hypothesis: Recent studies have suggested that determination of HDL function may be more informative than its concentration in predicting its protective role in coronary artery disease (CAD). Apolipoprotein AI (apoAI), the major protein of HDL, is nitrosylated in vivo to nitrated apoAI (NT-apoAI) that might cause dysfunction. We hypothesized that NT-apoAI/apoAI ratio might be associated with diabetes mellitus (DM) in CAD patients.

View Article and Find Full Text PDF

Background: Functional abnormalities of high-density lipoprotein (HDL) could contribute to cardiovascular disease in chronic kidney disease patients. We measured a validated marker of HDL dysfunction, nitrated apolipoprotein A-I, in kidney transplant recipients to test the hypothesis that a functioning kidney transplant reduces serum nitrated apoA-I concentrations.

Methods: Concentrations of nitrated apoA-I and apoB were measured using indirect sandwich ELISA assays on sera collected from each transplant subject before transplantation and at 1, 3, and 12 months after transplantation.

View Article and Find Full Text PDF

Nutrition & Metabolism has grown considerably in the ten years since its first article was published. To see how papers published in the journal had an impact we have identified some of the most popular articles in order to measure their influence, observe which fields are important to our readers, and try to explain what made these articles Nutrition & Metabolism "Classics".

View Article and Find Full Text PDF

Background: Oxidative stress plays an important role in the pathogenesis of coronary artery disease. Recent work showed that high-density lipoproteins isolated from atherosclerotic lesions and blood of patients with established coronary artery disease contain elevated levels of nitrated apolipoprotein A-I. Methods to quantify nitrated apolipoprotein A-I in the plasma may facilitate in the determination of a correlation between plasma levels of nitrated apolipoprotein A-I and risk of atherosclerosis.

View Article and Find Full Text PDF