Scaffolds derived from decellularized tissue possess many advantages for bioengineering applications, including for novel infertility treatments. However, the decellularization process results in allogenic-independent damage-associated molecular patterns (DAMPs). This field is poorly studied, in particular for uterus bioengineering applications.
View Article and Find Full Text PDFBackground: Fertility preservation is particularly challenging in young women diagnosed with hematopoietic cancers, as transplantation of cryopreserved ovarian cortex in these women carries the risk for re-introducing cancer cells. Therefore, the construction of a bioengineered ovary that can accommodate isolated small follicles was proposed as an alternative to minimize the risk of malignancy transmission. Various options for viable bioengineered scaffolds have been reported in the literature.
View Article and Find Full Text PDFBackground: In order to preserve fertility in young women with disseminated cancer, e.g. leukemia, an approach that has been suggested is to retransplant isolated small follicles within an ovarian matrix free from malignant cells and with no risk for contamination.
View Article and Find Full Text PDFSophisticated culturing conditions are required to grow cells in a three-dimensional (3D) environment. Cells then require a type of scaffold rich in proteins, growth factors, and signaling molecules that simulates their natural environment. Tissues from all species of animals have an organ-specific extracellular matrix (ECM) structure that plays a key role in cell proliferation and migration.
View Article and Find Full Text PDF