Publications by authors named "Ahmed Atef Ahmed Ali"

Temozolomide (TMZ) monotherapy is known to be insufficient for resistant/relapsed glioblastoma (GBM), thus seeking a sensitization agent for TMZ is necessary. It was found that regorafenib may improve the overall survival of relapsed GBM patients. We aimed to discover whether regorafenib can enhance the anti-GBM effects of TMZ, and elucidate underlying mechanism.

View Article and Find Full Text PDF

Stimuli-responsive emulsifiers have emerged as a class of smart agents that can permit regulated stabilization and destabilization of emulsions, which is essential for food, cosmetic, pharmaceutical, and petroleum industries. Here, we report the synthesis of novel "smart" hydroxyapatite (HaP) magnetic nanoparticles and their corresponding stimuli-responsive Pickering emulsions and explore their movement under confined spaces using a microfluidic platform. Pickering emulsions prepared with our magnetic stearic acid-functionalized FeO@HaP nanoparticles exhibited pronounced pH-responsive behavior.

View Article and Find Full Text PDF

Considerable health and climate benefits arising from the use of low-sulfur fuels has propelled the research on desulfurization of fossil fuels. Ideal fuels are urgently needed and are expected to be ultra-low in sulfur (10-15 ppm), with no greater than 50 ppm sulfur content. Although several sulfur removal techniques are available in refineries and petrochemical units, their high operational costs, complex operational needs, low efficiencies, and higher environmental risks render them unviable and challenging to implement.

View Article and Find Full Text PDF

Background: Regenerative medicine field is still lagging due to the lack of adequate knowledge regarding the homing of therapeutic cells towards disease sites, tracking of cells during treatment, and monitoring the biodistribution and fate of cells. Such necessities require labeling of cells with imaging agents that do not alter their biological characteristics, and development of suitable non-invasive imaging modalities.

Purpose: We aimed to develop, characterize, and standardize a facile labeling strategy for engineered mesenchymal stem cells without altering their viability, secretion of FGF21 protein (neuroprotective), and differentiation capabilities for non-invasive longitudinal MRI monitoring in live mice brains with high sensitivity.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are emerging as a potential therapeutic intervention for brain injury due to their neuroprotective effects and safe profile. However, the homing ability of MSCs to injury sites still needs to be improved. Fibroblast Growth Factor 21 (FGF21) was recently reported to enhance cells migration in different cells type.

View Article and Find Full Text PDF

The small-molecule naphtha [2,3-f]quinoxaline-7,12-dione (NSC745887) can effectively inhibit the proliferation of various cancers by trapping DNA-topoisomerase cleavage. The aim of this study was to elucidate cellular responses of NSC745887 in human glioblastoma multiforme (GBM, U118MG and U87MG cells) and investigate the underlying molecular mechanisms. NSC745887 reduced the cell survival rate and increased the sub-G population in dose- and time-dependent manners in GBM cells.

View Article and Find Full Text PDF

Non-small-cell lung cancer (NSCLC) is the most common type of lung cancer. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors are commonly used as the first-line treatment for advanced NSCLC; however, the efficacy of drug delivery remains unknown. Hence, we successfully developed erlotinib-conjugated iron oxide nanoparticles (FeDC-E NPs) as theranostic probe that can potentially provide a new avenue for monitoring drug delivering through noninvasive magnetic resonance imaging.

View Article and Find Full Text PDF

Background: Targeted superparamagnetic iron oxide (SPIO) nanoparticles have emerged as a promising biomarker detection tool for molecular magnetic resonance (MR) image diagnosis. To identify patients who could benefit from Epidermal growth factor receptor (EGFR)-targeted therapies, we introduce lipid-encapsulated SPIO nanoparticles and hypothesized that anti-EGFR antibody cetuximab conjugated of such nanoparticles can be used to identify EGFR-positive glioblastomas in non-invasive T MR image assays. The newly introduced lipid-coated SPIOs, which imitate biological cell surface and thus inherited innate nonfouling property, were utilized to reduce nonspecific binding to off-targeted cells and prevent agglomeration that commonly occurs in nanoparticles.

View Article and Find Full Text PDF

We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly rather than into the bloodstream, and specifically recognize and kill cancer cells that overexpress EGFR while being non-toxic to EGFR-negative cells.

View Article and Find Full Text PDF

The novel compounds NSC745885 and NSC757963 developed at our laboratory were tested against a panel of 60 cancer cell lines at the National Cancer Institute, USA, and a panel of 39 cancer cell lines at the Japanese Foundation of Cancer Research. Both compounds demonstrated selective unique multi-log differential patterns of activity, with GI50 values in the sub-micro molar range against cancer cells rather than normal cardiac cells. NSC757963 showed high selectivity towards the leukemia subpanel.

View Article and Find Full Text PDF

Inhibiting osteoclastogenesis is a promising therapeutic target for treating osteoclast-related diseases. Herein, we synthesized a series of modified salicylanilides and their corresponding 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione and 10-phenyldibenzo[b,f][1,4]oxazepin-11(10H)-one derivatives, and investigated the effects of such compounds on RANKL-induced osteoclast formation. Among them, a salicylanilide derivative (A04) and its 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivative (B04) markedly suppressed RANKL-induced osteoclast differentiation and showed no significant cytotoxic effects at doses higher than that required to inhibit osteoclast formation.

View Article and Find Full Text PDF

A series of sulfur-substituted anthra[1,2-c][1,2,5]thiadiazole-6,11-diones were synthesized and evaluated using the cell proliferations, apoptosis and NCI-60 cell panel assays. Also, the signaling pathways that account for their activities were investigated. Compounds 2, 3, 4a, 4d, 4f, 4i, 4k, 5b, 5c, 5d, 5f, 5g, 6b, 6c, 6d, 6e, 6g, 7a and 7g were selected by NCI.

View Article and Find Full Text PDF

A series of novel 6-(2,4-difluorophenyl)-3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivatives were synthesized and evaluated for their inhibitory effects on osteoclast activities by using TRAP-staining assay. Among the tested compounds, 3d and 3h exhibited more potent osteoclast-inhibitory activities than the lead compound NDMC503 (a ring-fused structure of NDMC101), as reported in our previous study. Both 3d and 3h exhibited two-fold increase in activity compared to NDMC503.

View Article and Find Full Text PDF
Article Synopsis
  • Efficient synthesis methods were developed for mono-substituted anthraquinones and anthra[2,3-d]oxazole-2-thione-5,10-dione derivatives, which were then tested for their effects on PC-3 cancer cell lines.
  • Compounds 8, 14, 17, and 23 were selected by the NCI for further evaluation, with compounds 12, 17, and 19 tested for their impact on topoisomerase I-mediated DNA relaxation.
  • Among these, compound 17 demonstrated the highest potency, exhibiting strong inhibition against the PC-3 cell line and effectively suppressing topoisomerase I activity at low concentrations, indicating promising potential for anticancer drug development.
View Article and Find Full Text PDF

Inhibition of osteoclast formation is a potential strategy to prevent inflammatory bone resorption and to treat bone diseases. In the present work, the purpose was to discover modified salicylanilides and 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivatives as potential antiosteoclastogenic agents. Their inhibitory effects on RANKL-induced osteoclastogenesis from RAW264.

View Article and Find Full Text PDF