Publications by authors named "Ahmed Almaiman"

Article Synopsis
  • Performing pattern recognition in the optical domain can offer benefits like high-speed operation and the ability to adjust and scale based on optical wave properties.
  • This study combines optical correlation with optical biasing to achieve efficient QPSK pattern recognition using direct detection, eliminating the need for complex coherent detection.
  • The experimental results show successful error-free recognition of multiple QPSK patterns over 3072 symbols at different baud rates, indicating effective performance with specific power thresholding values.
View Article and Find Full Text PDF

Compared to its electronic counterpart, optically performed matrix convolution can accommodate phase-encoded data at high rates while avoiding optical-to-electronic-to-optical (OEO) conversions. We experimentally demonstrate a reconfigurable matrix convolution of quadrature phase-shift keying (QPSK)-encoded input data. The two-dimensional (2-D) input data is serialized, and its time-shifted replicas are generated.

View Article and Find Full Text PDF

This paper considers the classification of multiplexed structured light modes, aiming to bolster communication reliability and data transfer rates, particularly in challenging scenarios marked by turbulence and potential eavesdropping. An experimental free-space optic (FSO) system is established to transmit 16 modes [8-ary Laguerre Gaussian (LG) and 8-ary superposition LG (Mux-LG) mode patterns] over a 3-m FSO channel, accounting for interception threats and turbulence effects. To the best of authors' knowledge, this paper is the first to consider both factors concurrently.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers successfully demonstrate an optically-assisted method for averaging two 4-phase-encoded data streams at high rates of 10 and 20-Gbaud, resulting in a 7-phase-encoded output.
  • * The process involves three key stages: phase encoding with an optical modulator, summation using nonlinear fiber, and multicast through a lithium niobate waveguide, with the final output showing increased error vector magnitudes and optical signal-to-noise ratio penalties.
View Article and Find Full Text PDF

In optical sensing applications such as pipeline monitoring and intrusion detection systems, accurate localization of the event is crucial for timely and effective response. This paper experimentally demonstrates multievent localization for long perimeter monitoring using a Sagnac interferometer loop sensor and machine learning techniques. The proposed method considers the multievent localization problem as a multilabel multiclassification problem by dividing the optical fiber into 250 segments.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents an experimental demonstration of an optics-based half-adder that processes two channels of 4-phase-shift-keying (4-PSK) data using nonlinear wave mixing technology.
  • The system takes two sets of 4-ary phase-encoded inputs and produces corresponding outputs labeled as Sum and Carry through a nonlinear device, showcasing multiple phase levels for both inputs and outputs.
  • Experimental findings indicate that the half-adder achieves specific conversion efficiencies for data outputs, with low optical signal-to-noise ratio penalties at varying symbol rates, confirming its effectiveness in high-speed optical communication.
View Article and Find Full Text PDF

This paper demonstrates an intruder detection system using a strain-based optical fiber Bragg grating (FBG), machine learning (ML), and adaptive thresholding to classify the intruder as no intruder, intruder, or wind at low levels of signal-to-noise ratio. We demonstrate the intruder detection system using a portion of a real fence manufactured and installed around one of the engineering college's gardens at King Saud University. The experimental results show that adaptive thresholding can help improve the performance of machine learning classifiers, such as linear discriminant analysis (LDA) or logistic regression algorithms in identifying an intruder's existence at low optical signal-to-noise ratio (OSNR) scenarios.

View Article and Find Full Text PDF

In this work, we investigate the performance of an ambiguity function-shaped waveform (AFSW) using a millimeter-wave photonics-based radar system at 100 GHz. An AFSW is a radar waveform whose ambiguity function can be shaped to increase the peak-to-sidelobe ratio (PSR) for better detectability of targets in a desired range/velocity region. To the best of the authors' knowledge, this paper is the first in the literature that investigates the performance of such a waveform in a photonics-based radar system.

View Article and Find Full Text PDF

Structured electromagnetic (EM) waves have been explored in various frequency regimes to enhance the capacity of communication systems by multiplexing multiple co-propagating beams with mutually orthogonal spatial modal structures (i.e., mode-division multiplexing).

View Article and Find Full Text PDF

A reconfigurable optical-to-electrical signal aggregation is proposed, for the first time, using optical signal processing and photo-mixing technology. Two optically modulated quadrature phase-shift keying (QPSK) signals are aggregated into a single 16-quadrature amplitude modulation (16-QAM) signal and, simultaneously, carried over a 28-GHz millimeter wave (MMW) carrier using an optimized heterodyne beating process through a single photodiode. To demonstrate the system reconfigurability, aggregation of two optical binary phase-shift keying signals is mapped into MMW QPSK or four-level pulse amplitude modulation signals by controlling the relative phases and amplitudes, respectively, of the input signals.

View Article and Find Full Text PDF

We experimentally investigate the tunable Doppler shift in an 80 nm thick indium-tin-oxide (ITO) film at its epsilon-near-zero (ENZ) region. Under strong and pulsed excitation, ITO exhibits a time-varying change in the refractive index. A maximum frequency redshift of 1.

View Article and Find Full Text PDF

A time-dependent change in the refractive index of a material leads to a change in the frequency of an optical beam passing through that medium. Here, we experimentally demonstrate that this effect-known as adiabatic frequency conversion (AFC)-can be significantly enhanced by a nonlinear epsilon-near-zero-based (ENZ-based) plasmonic metasurface. Specifically, by using a 63-nm-thick metasurface, we demonstrate a large, tunable, and broadband frequency shift of up to ∼11.

View Article and Find Full Text PDF

We experimentally demonstrate a tunable optical second-order Volterra filter using wave mixing and delays. Wave mixing is performed in a periodically poled lithium niobate waveguide with the cascaded sum-frequency generation and difference-frequency generation processes. Compared to conventional optical tapped delay line structures, second-order taps are added through the wave mixing of two signal copies.

View Article and Find Full Text PDF

Orbital-angular-momentum (OAM) multiplexing has been utilized to increase the channel capacity in both millimeter-wave and optical domains. Terahertz (THz) wireless communication is attracting increasing attention due to its broadband spectral resources. Thus, it might be valuable to explore the system performance of THz OAM links to further increase the channel capacity.

View Article and Find Full Text PDF

Limited-size receiver (Rx) apertures and transmitter-Rx (Tx-Rx) misalignments could induce power loss and modal crosstalk in a mode-multiplexed free-space link. We experimentally demonstrate the mitigation of these impairments in a 400 Gbit/s four-data-channel free-space optical link. To mitigate the above degradations, our approach of singular-value-decomposition-based (SVD-based) beam orthogonalization includes (1) measuring the transmission matrix H for the link given a limited-size aperture or misalignment; (2) performing SVD on the transmission matrix to find the U, , and V complex matrices; (3) transmitting each data channel on a beam that is a combination of Laguerre-Gaussian modes with complex weights according to the V matrix; and (4) applying the U matrix to the channel demultiplexer at the Rx.

View Article and Find Full Text PDF

We experimentally demonstrate tunable optical single-sideband (SSB) generation using a tapped-delay-line (TDL) optical filter for 10 and 20 Gbit/s on/off-keying (OOK) signals and a 20 Gbit/s four-level pulse-amplitude-modulated (PAM4) signal. The optical SSB filter is realized by using an optical frequency comb, wavelength-dependent delay, and nonlinear wave-mixing to achieve the TDL function. Moreover, SSB tunability is achieved by adjusting the amplitude, phase, frequency spacing, and number of selected optical frequency comb lines.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a feedback-based probabilistic constellation shaping (FB-PCS) technique for a 10 Gbaud 16-QAM signal, allowing adaptive symbol distribution based on receiver errors without needing prior channel knowledge.
  • The method involves transmitting a uniform training sequence, collecting error data, and adjusting the constellation to favor symbols with lower error rates.
  • Results show that FB-PCS significantly reduces symbol error rates, outperforming uniform shaping and achieving a reduction of about 50% compared to conventional methods.
View Article and Find Full Text PDF

In this paper, we experimentally demonstrate an approach that "hides" a low-intensity 50 Gbit/s quadrature-phase-keying (QPSK) free-space optical beam when it coaxially propagates on the same wavelength with an orthogonal high-intensity 50 Gbit/s QPSK optical beam. Our approach is to coaxially transmit the strong and weak beams carrying different orthogonal spatial modes within a modal basis set, e.g.

View Article and Find Full Text PDF

We experimentally demonstrate the use of orbital angular momentum (OAM) modes as a degree of freedom to facilitate the networking functions of carrying header information and orthogonal channel coding. First, for carrying channel header information, we transmit a 10 Gb/s on-off keying (OOK) data channel as a Gaussian beam and add to it a 10 Mb/s OOK header carried by an OAM beam with the mode order =3. We recover the header and use it to drive a switch and select the output port.

View Article and Find Full Text PDF

Novel forms of beam generation and propagation based on orbital angular momentum (OAM) have recently gained significant interest. In terms of changes in time, OAM can be manifest at a given distance in different forms, including: (1) a Gaussian-like beam dot that revolves around a central axis, and (2) a Laguerre-Gaussian ([Formula: see text]) beam with a helical phasefront rotating around its own beam center. Here we explore the generation of dynamic spatiotemporal beams that combine these two forms of orbital-angular-momenta by coherently adding multiple frequency comb lines.

View Article and Find Full Text PDF

We study the relationship between the input phase delays and the output mode orders when using a pixel-array structure fed by multiple single-mode waveguides for tunable orbital-angular-momentum (OAM) beam generation. As an emitter of a free-space OAM beam, the designed structure introduces a transformation function that shapes and coherently combines multiple (e.g.

View Article and Find Full Text PDF

We experimentally demonstrate the utilization of adaptive optics (AO) to mitigate intra-group power coupling among linearly polarized (LP) modes in a graded-index few-mode fiber (GI FMF). Generally, in this fiber, the coupling between degenerate modes inside a modal group tends to be stronger than between modes belonging to different groups. In our approach, the coupling inside the group can be represented by a combination of orbital-angular-momentum (OAM) modes, such that reducing power coupling in OAM set tends to indicate the capability to reduce the coupling inside the group.

View Article and Find Full Text PDF

We utilize aperture diversity combined with multiple-mode receivers and multiple-input-multiple-output (MIMO) digital signal processing (DSP) to demonstrate enhanced tolerance to atmospheric turbulence and spatial misalignment in a 10 Gbit/s quadrature-phase-shift-keyed (QPSK) free-space optical (FSO) link. Turbulence and misalignment could cause power coupling from the fundamental Gaussian mode into higher-order modes. Therefore, we detect power from multiple modes and use MIMO DSP to enhance the recovery of the original data.

View Article and Find Full Text PDF

We experimentally demonstrate Kramers-Kronig detection of four 20 Gbaud 16-quadrature-amplitude-modulated (QAM) channels after 50 km fiber transmission using two soliton Kerr combs as signal sources and local oscillators. The estimated carrier phase at the receiver for each of the channels is relatively similar due to the coherence between the frequency comb lines. The standard deviation of the estimated carrier phase difference of the channels is less than 0.

View Article and Find Full Text PDF

The unique orthogonal shapes of structured light beams have attracted researchers to use as information carriers. Structured light-based free space optical communication is subject to atmospheric propagation effects such as rain, fog, and rain, which complicate the mode demultiplexing process using conventional technology. In this context, we experimentally investigate the detection of Laguerre Gaussian and Hermite Gaussian beams under dust storm conditions using machine learning algorithms.

View Article and Find Full Text PDF