Publications by authors named "Ahmed Alkhayyat"

MRI imaging primarily focuses on the soft tissues of the human body, typically performed prior to a patient's transfer to the surgical suite for a medical procedure. However, utilizing MRI images for tumor diagnosis is a time-consuming process. To address these challenges, a new method for automatic brain tumor diagnosis was developed, employing a combination of image segmentation, feature extraction, and classification techniques to isolate the specific region of interest in an MRI image corresponding to a brain tumor.

View Article and Find Full Text PDF

Images captured in low-light environments are severely degraded due to insufficient light, which causes the performance decline of both commercial and consumer devices. One of the major challenges lies in how to balance the image enhancement properties of light intensity, detail presentation, and colour integrity in low-light enhancement tasks. This study presents a novel image enhancement framework using a detailed-based dictionary learning and camera response model (CRM).

View Article and Find Full Text PDF

This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Image Filter for the infrared (IR) images to amplify edge boundaries and a function for the visible (VIS) images to boost local contrast and brightness. Utilizing a two-scale decomposition technique that incorporates Lipschitz constraints-based smoothing, the images are effectively divided into distinct base and detail layers, thereby guaranteeing the preservation of essential structural information.

View Article and Find Full Text PDF

Multimodal medical image fusion is a perennially prominent research topic that can obtain informative medical images and aid radiologists in diagnosing and treating disease more effectively. However, the recent state-of-the-art methods extract and fuse features by subjectively defining constraints, which easily distort the exclusive information of source images. To overcome these problems and get a better fusion method, this study proposes a 2D data fusion method that uses salient structure extraction (SSE) and a swift algorithm via normalized convolution to fuse different types of medical images.

View Article and Find Full Text PDF

Brain-computer interface (BCI) technology holds promise for individuals with profound motor impairments, offering the potential for communication and control. Motor imagery (MI)-based BCI systems are particularly relevant in this context. Despite their potential, achieving accurate and robust classification of MI tasks using electroencephalography (EEG) data remains a significant challenge.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) is a life-threatening hematological malignancy that requires early and accurate diagnosis for effective treatment. However, the manual diagnosis of ALL is time-consuming and can delay critical treatment decisions. To address this challenge, researchers have turned to advanced technologies such as deep learning (DL) models.

View Article and Find Full Text PDF

The research paper mainly deals with waste heat recovery from internal combustion engines (ICE) using the organic Rankine cycle (ORC) and Thermoelectric generator (TEG). Simultaneously recovering the wasted heat of both exhaust gases and coolant, a novel configuration named two-stage is proposed. Then a comprehensive thermo-economic analysis and optimization are conducted.

View Article and Find Full Text PDF

Cervical cancer is a prevalent and deadly cancer that affects women all over the world. It affects about 0.5 million women anually and results in over 0.

View Article and Find Full Text PDF

Membrane-based separation processes has been recently of significant global interest compared to other conventional separation approaches due to possessing undeniable advantages like superior performance, environmentally-benign nature and simplicity of application. Computational simulation of fluids has shown its undeniable role in modeling and simulation of numerous physical/chemical phenomena including chemical engineering, chemical reaction, aerodynamics, drug delivery and plasma physics. Definition of fluids can be occurred using the Navier-Stokes equations, but solving the equations remains an important challenge.

View Article and Find Full Text PDF

The rainfall-runoff process is one of the most complex hydrological phenomena. Estimating runoff in the basin is one of the main conditions for planning and optimal use of rainfall. Using machine learning models in various sciences to investigate phenomena for which statistical information is available is a helpful tool.

View Article and Find Full Text PDF

It is critical to use research methods to collect and regulate surface water to provide water while avoiding damage. Following accurate runoff prediction, principled planning for optimal runoff is implemented. In recent years, there has been an increase in the use of machine learning approaches to model rainfall-runoff.

View Article and Find Full Text PDF

This study mainly focuses on pre-processing the HAM10000 and BCN20000 skin lesion datasets to select important features that will drive for proper skin cancer classification. In this work, three feature fusion strategies have been proposed by utilizing three pre-trained Convolutional Neural Network (CNN) models, namely VGG16, EfficientNet B0, and ResNet50 to select the important features based on the weights of the features and are coined as Adaptive Weighted Feature Set (AWFS). Then, two other strategies, Model-based Optimized Weighted Feature Set (MOWFS) and Feature-based Optimized Weighted Feature Set (FOWFS), are proposed by optimally and adaptively choosing the weights using a meta-heuristic artificial jellyfish (AJS) algorithm.

View Article and Find Full Text PDF

Electrocardiography (ECG) is a technique for observing and recording the electrical activity of the human heart. The usage of an ECG signal is common among clinical professionals in the collection of time data for the examination of any rhythmic conditions associated with a subject. The investigation was carried out in order to computerize the assignment by exhibiting the issue using encoder-decoder techniques, creating the information that was simply typical of it, and utilising misfortune appropriation to anticipate standard or anomalous information.

View Article and Find Full Text PDF

Since the outbreak of the COVID-19 epidemic, several control strategies have been proposed. The rapid spread of COVID-19 globally, allied with the fact that COVID-19 is a serious threat to people's health and life, motivated many researchers around the world to investigate new methods and techniques to control its spread and offer treatment. Currently, the most effective approach to containing SARS-CoV-2 (COVID-19) and minimizing its impact on education and the economy remains a vaccination control strategy, however.

View Article and Find Full Text PDF

With the fast growth of technologies like cloud computing, big data, the Internet of Things, artificial intelligence, and cyber-physical systems, the demand for data security and privacy in communication networks is growing by the day. Patient and doctor connect securely through the Internet utilizing the Internet of medical devices in cloud-healthcare infrastructure (CHI). In addition, the doctor offers to patients online treatment.

View Article and Find Full Text PDF

Increasing demands for information and the rapid growth of big data have dramatically increased the amount of textual data. In order to obtain useful text information, the classification of texts is considered an imperative task. Accordingly, this article will describe the development of a hybrid optimization algorithm for classifying text.

View Article and Find Full Text PDF

These days, the usage of machine-learning-enabled dynamic Internet of Medical Things (IoMT) systems with multiple technologies for digital healthcare applications has been growing progressively in practice. Machine learning plays a vital role in the IoMT system to balance the load between delay and energy. However, the traditional learning models fraud on the data in the distributed IoMT system for healthcare applications are still a critical research problem in practice.

View Article and Find Full Text PDF

Artificial Intelligence (AI) driven adaptive techniques are viable to optimize the resources in the Internet of Things (IoT) enabled wearable healthcare devices. Due to the miniature size and ability of wireless data transfer, Body Sensor Networks (BSNs) have become the center of attention in current medical media technologies. For a long-term and reliable healthcare system, high energy efficiency, transmission reliability, and longer battery lifetime of wearable sensors devices are required.

View Article and Find Full Text PDF

Since the last decade, cloud-based electronic health records (EHRs) have gained significant attention to enable remote patient monitoring. The recent development of Healthcare 4.0 using the Internet of Things (IoT) components and cloud computing to access medical operations remotely has gained the researcher's attention from a smart city perspective.

View Article and Find Full Text PDF

The emergence of the Industry 4.0 revolution to upgrade the Internet of Things (IoT) standards provides the prominence outcomes for the future wireless communication systems called 5G. The development of 5G green communication systems suffers from the various challenges to fulfill the requirement of higher user capacity, network speed, minimum cost, and reduced resource consumption.

View Article and Find Full Text PDF

Multi-Inputs-Multi-Outputs (MIMO) systems are recognized mainly in industrial applications with both input and state couplings, and uncertainties. The essential principle to deal with such difficulties is to eliminate the input couplings, then estimate the remaining issues in real-time, followed by an elimination process from the input channels. These difficulties are resolved in this research paper, where a decentralized control scheme is suggested using an Improved Active Disturbance Rejection Control (IADRC) configuration.

View Article and Find Full Text PDF

Background: A health system response to domestic violence against women is a global priority. However, little is known about how these health system interventions work in low-and-middle-income countries where there are greater structural barriers. Studies have failed to explore how context-intervention interactions affect implementation processes.

View Article and Find Full Text PDF