The radical-bearing epoxy monomer could be the ideal embodiment of multifunctionality in epoxy-based materials. This study demonstrates the potential of macroradical epoxies as surface coating materials. A diepoxide monomer derivatized with a stable nitroxide radical is polymerized with a diamine hardener under the influence of a magnetic field.
View Article and Find Full Text PDFThe power of computational modeling and simulation for establishing clear links between materials' intrinsic properties and their atomic structure has more and more increased the demand for reliable and reproducible protocols. Despite this increased demand, no one approach can provide reliable and reproducible outcomes to predict the properties of novel materials, particularly rapidly cured epoxy-resins with additives. This study introduces the first computational modeling and simulation protocol for crosslinking rapidly cured epoxy resin thermosets based on solvate ionic liquid (SIL).
View Article and Find Full Text PDFThe fabrication of ultralight strong carbon nanofiber aerogels with excellent elasticity is still a challenge. Herein, 3D mesoporous graphene/carbon nanofibers (G/CNF) were prepared for the first time from polyacrylonitrile/poly(4-vinyl phenol) (PAN/PVPh) electrospun fibers. Through hydrogen bonding interactions between PAN and PVPh polymer chains, traditional soft carbon nanofibers can be converted to form hard nanofiber aerogels with excellent mechanical, electrical, and sorption properties.
View Article and Find Full Text PDFImproving the electrical performance of macroradical epoxy thermosets to surpass the semiconductor threshold requires a comprehensive understanding of the electrical charge transport mechanisms and characteristics. In this study, we investigate the electrical properties of a non-conjugated radical thermoset in a rigid, three-dimensional (3D) motif cured under an external magnetic field. The outcomes of the four-angle analysis of the synchrotron IRM beamline provide for the first time quantitative insights into the molecular orientation at the atomic-scale level.
View Article and Find Full Text PDFAdvancements in materials science and fabrication techniques have contributed to the significant growing attention to a wide variety of sensors for digital healthcare. While the progress in this area is tremendously impressive, few wearable sensors with the capability of real-time blood pressure monitoring are approved for clinical use. One of the key obstacles in the further development of wearable sensors for medical applications is the lack of comprehensive technical evaluation of sensor materials against the expected clinical performance.
View Article and Find Full Text PDF