The strand material in extrusion-based bioprinting determines the microenvironments of the embedded cells and the initial mechanical properties of the constructs. One unmet challenge is the combination of optimal biological and mechanical properties in bioprinted constructs. Here, a novel bioprinting method that utilizes core-shell cell-laden strands with a mechanically robust shell and an extracellular matrix-like core has been developed.
View Article and Find Full Text PDFPoly(β-amino ester)s (PAEs) have emerged as a promising class of gene delivery vectors with performances that can even be compared to viruses. However, all of the transfection studies (over 2350 PAEs) have been limited to linear poly(β-amino ester)s (LPAEs) despite increasing evidence that polymer structure significantly affects performance. Herein, we describe the development of highly branched poly(β-amino ester)s (HPAEs) via a new "A2+B3+C2" Michael addition approach demonstrating 2 to 126-fold higher in vitro transfection efficiencies of different cell types in comparison to their linear LPAE counterparts as well as greatly out-performing the leading transfection reagents SuperFect and the "gold-standard" polyethyleneimine (PEI) - especially on skin epidermal cells.
View Article and Find Full Text PDFA knot polymer, poly[bis(2-acryloyl)oxyethyl disulphide-co-2-(dimethylamino) ethyl methacrylate] (DSP), was synthesized, optimized and evaluated as a non-viral vector for gene transfection for skin cells, keratinocytes. With recessive dystrophic epidermolysis bullosa keratinocytes (RDEBK-TA4), the DSP exhibited high transfection efficacy with both Gaussia luciferase marker DNA and the full length COL7A1 transcript encoding the therapeutic type VII collagen protein (C7). The effective restoration of C7 in C7 null-RDEB skin cells indicates that DSP is promising for non-viral gene therapy of recessive dystrophic epidermolysis bullosa (RDEB).
View Article and Find Full Text PDFPolymer-based transfection vectors are increasingly becoming the preferred alternative to viral vectors thanks to their safety and ease of production, but low transfection potency has limited their application. Many polycationic vectors show high efficiency in vitro, but their excessive charge density makes them toxic for in vivo applications. Herein, we demonstrate the synthesis of new and unique disulfide-reducible polymeric gene nanocarriers that exhibit significantly enhanced transfection potency and low cytotoxicity, particularly in skin cells, surpassing the efficiency of the well-known transfection reagents polyethylenimine (PEI) and Lipofectamine2000.
View Article and Find Full Text PDFA series of degradable branched PDMAEMA copolymers were investigated with the linear PDMAEMA counterpart as gene-delivery vectors. The branched PDMAEMA copolymers were synthesized by controlled radical cross-linking copolymerization based on the "vinyl oligomer combination" approach. Efficient degradation properties were observed for all of the copolymers.
View Article and Find Full Text PDFRecent progress in gene therapy has opened doors for the development of new and multifunctional delivery agents based on the tailored synthesis of polymers. These polymers are in their infancy compared with viral agents, which have been optimised during millions of years of evolution, making viral vectors naturally efficient transfection agents. To improve the efficiency of polymer gene delivery to the level seen in viral vectors, it is necessary to understand the challenges faced by polymer gene delivery vectors both in vitro and in vivo.
View Article and Find Full Text PDFMinicircle (MC) DNA vectors have shown prolonged expression in gene transfection studies. Here we have developed a facile approach based on enzyme-catalyzed reactions to produce the MC DNA in vitro. eGFP plasmid was inserted by two mirror-symmetry pairs of EcoRV and HindIII restriction enzyme sites at both sides of the expression cassette.
View Article and Find Full Text PDFDespite the widespread use of drug eluting stents (DES), in-stent restenosis (ISR), delayed arterial healing and thrombosis remain important clinical complications. Gene-eluting stents (GES) represent a potential strategy for the prevention of ISR by delivering a therapeutic gene via a vector from the stent surface to the vessel wall. To this end, a model in vitro system was established to examine whether cationic liposomes could be used for gene delivery to human artery cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2012
Cationic polymers with various structures have been widely investigated in the areas of medical diagnostics and molecular biology because of their unique binding properties and capability to interact with biological molecules in complex biological environments. In this work, we report the grafting of a linear cationic polymer from an atom transfer radical polymerization (ATRP) initiator bound to cellulose paper surface. We show successful binding of ATRP initiator onto cellulose paper and grafting of polymer chains from the immobilized initiator with ATRP.
View Article and Find Full Text PDF