Salinity affects the morphological, physiological, and biochemical characteristics of several plant species. The current study was conducted to investigate differential salt tolerance potentials among ten duckweed clones under different salt-stress conditions. Morphological and physiological parameters, including fronds length, fronds number, root length, root number, Na/K, chlorophyll, proline contents, and fresh harvest weight, were recorded for each of the ten duckweed clones collected from different Saudi Arabia regions.
View Article and Find Full Text PDFThe hydroponic farming significantly enhances the yield and enables multiple cropping per year. These advantages can be improved by using plant growth-promoting fungi (PGPF) either under normal or stress conditions. In this study, the fungal strain (A3) isolated from the rhizosphere of the halophyte plant was identified as based on sequence homology of its ITS region.
View Article and Find Full Text PDFThe development of salt-tolerant tomato genotypes is a basic requirement to overcome the challenges of tomato production under salinity in the field or soil-free farming. Two groups of eight tomato introgression lines (ILs) each, were evaluated for salinity tolerance. Group-I and the group-II resulted from the following crosses respectively: cv-6203 × and M82 × .
View Article and Find Full Text PDFHydroponic systems have gained interest and are increasingly used in hot and dry desert areas. Numbers of benefits are offered by hydroponic systems such as the ability to save water, enhance nutrients use efficiency, easy environmental control, and prevention of soil-borne diseases. However, the high consumption of chemical fertilizers for nutrient solution and the sensitivity of closed hydroponic systems to salinity are issues that need solutions.
View Article and Find Full Text PDF