Studying genetic variability through the phenotypic performance of genotypes is crucial in the breeding program. Therefore, evaluating both yield performance and stability across diverse environments is essential in yield trials to identify high-yield potential and stable cultivars. In this study, we employed 12 univariate and 10 multivariate stability models to analyze how genotype (G), environment (E), and their interaction (G × E) affect the yield performance of 32 barley genotypes across 10 environments.
View Article and Find Full Text PDFOne of the main components of the worldwide transition to sustainable energy is solar cells, usually referred to as photovoltaics. By converting sunlight into power, they lessen their reliance on fossil fuels and the release of greenhouse gases. Because solar cells are decentralized, distributed energy systems may be developed, which increases the efficiency of the cells.
View Article and Find Full Text PDFDrought is a major abiotic stress that impairs the physiology and development of plants, ultimately leading to crop yield losses. Drought tolerance is a complex quantitative trait influenced by multiple genes and metabolic pathways. However, molecular intricacies and subsequent morphological and physiological changes in response to drought stress remain elusive.
View Article and Find Full Text PDF